[1]
J. M. Lucas, Counted Data CUSUM's, Technometrics, vol. 27, no. 2(1985), pp.129-144.
Google Scholar
[2]
C. M. Borror, C. W. Champ, and S. E. Rigdon, Poisson EWMA control charts, Journal of Quality Technology, vol. 30, no. 4(1998), pp.352-361.
DOI: 10.1080/00224065.1998.11979871
Google Scholar
[3]
J. M. Lucas, Combined Shewhart-CUSUM Quality Control Schemes: A Robustness Study for CUSUM Quality Control Schemes, Journal of Quality Technology, vol. 14(1982), pp.51-59.
DOI: 10.1080/00224065.1982.11978790
Google Scholar
[4]
Z. Wu, M. Yang, W. Jiang, and M. Khoo, Optimization Designs of the Combined Shewhart-CUSUM Control Charts, Computational Statistics & Data Analysis, vol. 53(2008), pp.496-506.
DOI: 10.1016/j.csda.2008.08.032
Google Scholar
[5]
Y. Zhao, F. Tsung, and Z. Wang, Dual CUSUM Control Schemes for Detecting a Range of Mean Shifts, IIE Transactions, vol. 37(2005), pp.1047-1057.
DOI: 10.1080/07408170500232321
Google Scholar
[6]
R. S. Sparks, CUSUM Charts for Signalling Varying Location Shifts, Journal of Quality Technology, vol. 32, no. 2(2000), pp.157-171.
DOI: 10.1080/00224065.2000.11979987
Google Scholar
[7]
D. Han, F. Tsung, X. Hu, and K. Wang, CUSUM and EWMA Multi-charts for Detecting a Range of Mean Shifts, Statistica Sinica, vol. 17(2007), pp.1139-1164.
Google Scholar
[8]
L. Shu and W. Jiang, A Markov Chain Model for the Adaptive CUSUM Control Chart, Journal of Quality Technology, vol. 38, no. 2(2006), pp.135-147.
DOI: 10.1080/00224065.2006.11918601
Google Scholar
[9]
W. Jiang, L. Shu, and D. Apley, Adaptive CUSUM Procedures with EWMA-based Shift Estimators, IIE Transactions, vol. 40(2008), pp.992-1003.
DOI: 10.1080/07408170801961412
Google Scholar
[10]
Z. Wu, J. Jiao, M. Yang, Y. Liu, and Z. Wang, An Enhanced Adaptive CUSUM Control Chart, IIE Transactions, vol. 41(2009), pp.642-653.
DOI: 10.1080/07408170802712582
Google Scholar
[11]
A. Willsky and H. Jones, A Generalized Likelihood Ratio Approach to the Detection and Estimation of Jumps in Linear Systems, IEEE Transactions on Automatic Control, vol. 21, no. 1(1976), pp.108-112.
DOI: 10.1109/tac.1976.1101146
Google Scholar
[12]
T. L. Lai, Sequential Analysis:Some Classical Problems and New Challenges, Statistica Sinica, vol. 11(2001), pp.303-408.
Google Scholar
[13]
M. R. Reynolds and J. Lou, An Evaluation of a GLR Control Chart for Monitoring the Process Mean, Journal of Quality Technology, vol. 42, no. 3(2010), pp.287-310.
DOI: 10.1080/00224065.2010.11917825
Google Scholar
[14]
D. W. Apley and J. Shi, The GLRT for Statistical Process Control of Autocorrelated Processes, IIE Transactions, vol. 31(1999), pp.1123-1134.
DOI: 10.1080/07408179908969913
Google Scholar
[15]
D. M. Hawkins and P. Qiu, The Change-point Model for Statistical Process Control, Journal of Quality Technology, vol. 35, no. 4(2003), pp.355-366.
Google Scholar
[16]
D. M. Hawkins and K. D. Zamba, Statistical Process Control for Shifts in Mean or Variance Using a Changepoint Formulation, Technometrics, vol. 47, no. 2(2005), pp.164-173.
DOI: 10.1198/004017004000000644
Google Scholar
[17]
E. Gombay, Sequential Change-point Detection with Likelihood Ratios, Statistics & Probability Letters, vol. 49, no. 2(2000), pp.195-204.
DOI: 10.1016/s0167-7152(00)00048-1
Google Scholar
[18]
S. H. Sheu and W. C. Chiu. Poisson GWMA Control Chart. Communication in Statistics-Simulation and Computation, vol. 36, no. 5(2007), pp.1099-1114
DOI: 10.1080/03610910701540037
Google Scholar