The GLR Chart for Poisson Process with Individual Observations

Article Preview

Abstract:

A GLR (generalized likelihood ratio) chart for Poisson distributed process with individual observations is proposed and the design procedure of the GLR chart is discussed. The performance of the GLR charts is compared to the exponentially weighted moving average (EWMA) chart and the GWMA chart. The numerical experiments show that the GLR chart has comparable performance as the other two charts. However, the GLR chart is much easier to design and implement since there are more design parameters in these two charts.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 542-543)

Pages:

42-46

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. M. Lucas, Counted Data CUSUM's, Technometrics, vol. 27, no. 2(1985), pp.129-144.

Google Scholar

[2] C. M. Borror, C. W. Champ, and S. E. Rigdon, Poisson EWMA control charts, Journal of Quality Technology, vol. 30, no. 4(1998), pp.352-361.

DOI: 10.1080/00224065.1998.11979871

Google Scholar

[3] J. M. Lucas, Combined Shewhart-CUSUM Quality Control Schemes: A Robustness Study for CUSUM Quality Control Schemes, Journal of Quality Technology, vol. 14(1982), pp.51-59.

DOI: 10.1080/00224065.1982.11978790

Google Scholar

[4] Z. Wu, M. Yang, W. Jiang, and M. Khoo, Optimization Designs of the Combined Shewhart-CUSUM Control Charts, Computational Statistics & Data Analysis, vol. 53(2008), pp.496-506.

DOI: 10.1016/j.csda.2008.08.032

Google Scholar

[5] Y. Zhao, F. Tsung, and Z. Wang, Dual CUSUM Control Schemes for Detecting a Range of Mean Shifts, IIE Transactions, vol. 37(2005), pp.1047-1057.

DOI: 10.1080/07408170500232321

Google Scholar

[6] R. S. Sparks, CUSUM Charts for Signalling Varying Location Shifts, Journal of Quality Technology, vol. 32, no. 2(2000), pp.157-171.

DOI: 10.1080/00224065.2000.11979987

Google Scholar

[7] D. Han, F. Tsung, X. Hu, and K. Wang, CUSUM and EWMA Multi-charts for Detecting a Range of Mean Shifts, Statistica Sinica, vol. 17(2007), pp.1139-1164.

Google Scholar

[8] L. Shu and W. Jiang, A Markov Chain Model for the Adaptive CUSUM Control Chart, Journal of Quality Technology, vol. 38, no. 2(2006), pp.135-147.

DOI: 10.1080/00224065.2006.11918601

Google Scholar

[9] W. Jiang, L. Shu, and D. Apley, Adaptive CUSUM Procedures with EWMA-based Shift Estimators, IIE Transactions, vol. 40(2008), pp.992-1003.

DOI: 10.1080/07408170801961412

Google Scholar

[10] Z. Wu, J. Jiao, M. Yang, Y. Liu, and Z. Wang, An Enhanced Adaptive CUSUM Control Chart, IIE Transactions, vol. 41(2009), pp.642-653.

DOI: 10.1080/07408170802712582

Google Scholar

[11] A. Willsky and H. Jones, A Generalized Likelihood Ratio Approach to the Detection and Estimation of Jumps in Linear Systems, IEEE Transactions on Automatic Control, vol. 21, no. 1(1976), pp.108-112.

DOI: 10.1109/tac.1976.1101146

Google Scholar

[12] T. L. Lai, Sequential Analysis:Some Classical Problems and New Challenges, Statistica Sinica, vol. 11(2001), pp.303-408.

Google Scholar

[13] M. R. Reynolds and J. Lou, An Evaluation of a GLR Control Chart for Monitoring the Process Mean, Journal of Quality Technology, vol. 42, no. 3(2010), pp.287-310.

DOI: 10.1080/00224065.2010.11917825

Google Scholar

[14] D. W. Apley and J. Shi, The GLRT for Statistical Process Control of Autocorrelated Processes, IIE Transactions, vol. 31(1999), pp.1123-1134.

DOI: 10.1080/07408179908969913

Google Scholar

[15] D. M. Hawkins and P. Qiu, The Change-point Model for Statistical Process Control, Journal of Quality Technology, vol. 35, no. 4(2003), pp.355-366.

Google Scholar

[16] D. M. Hawkins and K. D. Zamba, Statistical Process Control for Shifts in Mean or Variance Using a Changepoint Formulation, Technometrics, vol. 47, no. 2(2005), pp.164-173.

DOI: 10.1198/004017004000000644

Google Scholar

[17] E. Gombay, Sequential Change-point Detection with Likelihood Ratios, Statistics & Probability Letters, vol. 49, no. 2(2000), pp.195-204.

DOI: 10.1016/s0167-7152(00)00048-1

Google Scholar

[18] S. H. Sheu and W. C. Chiu. Poisson GWMA Control Chart. Communication in Statistics-Simulation and Computation, vol. 36, no. 5(2007), pp.1099-1114

DOI: 10.1080/03610910701540037

Google Scholar