Facial Feature Location Based on Improved ASM

Article Preview

Abstract:

It makes a series of improvements of the traditional oriented way of human face, which is based on ASM. First, we orientate some outstanding feature points on the basis of the results of face test, then make use of these feature points to initialize model. Second, we get some statistics information of the edge in the training process and take a vertical range of the edge in a feature point. According to the scope of positioning, we looked at the local search results on its position before reconstruction the local adjust, thus preventing the search results from departing from the feature pointed have orientated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 546-547)

Pages:

1398-1403

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kass, A. Witkin, an and J. Graham. Active shape models-their training and application. Computer vision andimage understanding, 61(1): pp.38-59( 1995).

Google Scholar

[2] L. Wiskott, J.M. Fellous, N. Kruger, C. v. d. Malsburg, Face Recogniton by Elastic Bunch Graph Matching, IEEE Trans. On PAMI, Vol. 19, No. 7, pp.775-779(1997).

DOI: 10.1109/34.598235

Google Scholar

[3] Afzal S, Sezgin T. M, Yujian Gao, Robinson P. Perception of emotional expressions in different representations using facial feature points. In: Affective Computing and Intelligent Interaction and Workshops, Amsterdam, Holland, 2009, pp.1-6.

DOI: 10.1109/acii.2009.5349549

Google Scholar

[4] H. Tang, Huang T.S. 3D facial expression recognition based on properties of line segments connecting facial feature points. In: Automatic Face & Gesture Recognition, Amsterdam, The Netherlands, 2008: 1 – 6.

DOI: 10.1109/afgr.2008.4813304

Google Scholar

[5] T.F. Cootes, C.J. Taylor, D. Cooper, GKC. An accurate active shape model for facial feature extraction. Pattern Recognition Letters, (2005), 26(12): 2409-2423.

DOI: 10.1016/j.patrec.2005.04.015

Google Scholar

[6] A.L. Yuille, Deformable templates for face detection, J. Cogn. Neurosci. 59-70(1991).

Google Scholar

[7] C. Davatzikos, X. Tao, D. Shen, Hierarchical active shape models, using the wavelet transform, IEEE Transactions on Medical Imaging 22 (3) (2003) 414–423.

DOI: 10.1109/tmi.2003.809688

Google Scholar

[8] B.V. Ginneken, A.F. Frangi, J.J. Staal, B.M. Romeny, M.A. Viergever, Active shape model segmentation with optimal features, IEEE Transactions on Medical Imaging 21 (8) (2002) 924–933.

DOI: 10.1109/tmi.2002.803121

Google Scholar

[9] R. Larsen, M.B. Stegmann, S. Darkner, S. Forchhammer, T.F. Cootes, B.K. Ersboll, Texture enhanced appearance models, Computer Vision and Image Understanding 106 (2007) 20–30.

DOI: 10.1016/j.cviu.2005.09.007

Google Scholar

[10] D. Gomez, J. Montero, J. Yanez, A coloring fuzzy graph approach for image classification, Information Sciences 176 (24) (2006)3645–3657.

DOI: 10.1016/j.ins.2006.01.006

Google Scholar

[11] J. Kim, M. Cetin, A.S. Willsky, Nonparametric shape priors for active contour-based image, segmentation, Signal Processing 87 (12)(2007) 3021–3044.

DOI: 10.1016/j.sigpro.2007.05.026

Google Scholar

[12] R. Larsen, M.B. Stegmann, S. Darkner, S. Forchhammer, T.F. Cootes, B.K. Ersboll, Texture enhanced appearance models, Computer Vision and Image Understanding 106 (2007) 20–30.

DOI: 10.1016/j.cviu.2005.09.007

Google Scholar

[13] S.H. Leung, S.L. Wang, W.H. Lau, Lip image segmentation using fuzzy clustering incorporating an elliptic shape function, IEEE Transactions on Image Processing 13 (2004) 51–62.

DOI: 10.1109/tip.2003.818116

Google Scholar

[14] S.Z. Li, E.K.T.Z. Xue, Bayesian shape model for facial feature extraction and recognition, Pattern Recognition 36 (2004) 2819–2833.

DOI: 10.1016/s0031-3203(03)00181-x

Google Scholar

[15] F.Y. Shih, C.F. Chuang, Automatic extraction of head and face boundaries and facial features, Information Sciences 158 (2004) 117–130.

DOI: 10.1016/j.ins.2003.03.002

Google Scholar

[16] K.W. Wan, K.M. Lam, K.C. Ng, An accurate active shape model for facial feature extraction, Pattern Recognition Letters 26 (2005)2409–2423.

DOI: 10.1016/j.patrec.2005.04.015

Google Scholar

[17] W.T. Wong, F.Y. Shih, J. Liu, Shape-based image retrieval using support vector machines, Fourier descriptors and self-organizing maps, Information Sciences 177 (8) (2007) 1878–1891.

DOI: 10.1016/j.ins.2006.10.008

Google Scholar

[18] S.C. Yan, C. Liu, S.Z. Li, H.J. Zhang, H.Y. Shum, Q.S. Cheng, Face alignment using texture-constrained active shape models, Image and Vision Computing 12 (2003) 69–75.

DOI: 10.1016/s0262-8856(02)00136-1

Google Scholar

[19] Z. Zhao, E.K. Teoh, A new scheme for automated 3D PDM construction using deformable models, Image and Vision Computing 26(2) (2008) 275–288.

DOI: 10.1016/j.imavis.2007.06.002

Google Scholar

[20] Irene K., Stefanos Z., Ioannis P. Texture and shape information fusion for facial expression and facial action unit recognition. Pattern Recognition, 41(3): 833-851(2008).

DOI: 10.1016/j.patcog.2007.06.026

Google Scholar

[21] Y. Liu, Y. Li,T. Lin Mi Multi—view face alignment guided by several facial feature points/Proceedings of the Third IEEE International Conference on Image and Graphics(ICIG'04),San Francisco,2004:2 244-2247.

DOI: 10.1109/icig.2004.100

Google Scholar

[22] D. Cristinacce, T. Cootes: Feature Detection and Tracking with Constrained Local Models. BMVC 17, 929{938 (2006).

Google Scholar

[23] D. Bates, M. Maechler: Matrix: A Matrix package for R (2008). cran. r-project. org/web/packages/Matrix/index. html. See the nearPD function in this R package for methods of forcing positive de_niteness.

Google Scholar

[24] T. F. Cootes, C. J. Taylor: A Mixture Model for Representing Shape Variation. Image and Vision Computing 17 8, 567{574 (1999).

DOI: 10.1016/s0262-8856(98)00175-9

Google Scholar

[25] B. van Ginneken, A. F. Frangi, J. J. Stall, B. ter Haar Romeny: Active Shape Model Segmentation with Optimal Features. IEEE-TMI 21, 924-933 (2002).

DOI: 10.1109/tmi.2002.803121

Google Scholar