Flexible Photovoltaic Solar Cells with Nickle Oxide Buffering Layer

Article Preview

Abstract:

An efficient flexible organic solar cell was presented. The highest power conversion efficiency (PCE) of 3.2% and 2.5% were achieved on glass substrate and flexible substrate individually. The device photovoltaic properties were discussed in terms of the band diagrams and series resistance of the devices. Also the properties of nickle oxide thin film on different conditions were investigated too. Room temperarure sputtered and highly conductive nickle oxide (NiO) thin film as hole transporting layer in the cells. The strcture of this kind of devices is PET/ITO/NiO/P3HT: PCBM [regioregular of poly (3-hexylthiophene):(6,6)-phenyl C61 butyric acid methyl ester] /Al. On the study of characteristics of Nickle oxide thin film, such as sputtering temperature, thickness, and oxygen proportion, we found that NiO with 10 nm and sputtered at room temperature shows the best photovoltaic properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 546-547)

Pages:

34-37

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger: Science Vol. 317 (2007), pp.222-225.

Google Scholar

[2] R. Steim, S. A. Choulis, P. Schilinsky, and C. J. Brabec: Appl. Phys. Lett. Vol. 92 (2008), p.093303.

DOI: 10.1063/1.2885724

Google Scholar

[3] S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O'Malley, and K. Y. Jen: Appl. Phys. Lett. Vol. 92 (2008), p.253301.

Google Scholar

[4] J. Halme, J. Saarinen, and P. Lund: Sol. Energy Mater. Sol. Cells Vol. 90 (2006), pp.887-899.

Google Scholar

[5] X. Fan, F. Z. Wang, Z. Z. Chu, L. Chen, C. Zhang, and D. C. Zou: Appl. Phys. Lett. Vol. 90 (2007), p.073501.

Google Scholar

[6] M. D. Irwin, B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks: Proc. Natl. Acad. Sci. U.S.A. Vol. 105 (2008), pp.2783-2787.

Google Scholar

[7] D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong: Appl. Phys. Lett. Vol. 93 (2008), p.083305.

Google Scholar

[8] L. Ai, G.J. Fang, L.Y. Yuan, and X.Z. Zhao: Appl. Surf. Sci. Vol. 254(2008), pp.2401-2405.

Google Scholar

[9] W.L. Jang, Y.M. Lu, W.S. Hwang, T.L. Hsiung and H.P. Wang: Appl. Phys. Lett. Vol. 94 (2009), p.062103.

Google Scholar

[10] Y.H. Zhou, F.L. Zhang, K. Tvingstedt, W.J. Tian, and O. Inganäs1: Appl. Phys. Lett. Vol. 93 (2008), p.033302.

Google Scholar

[11] S. Sensfuss, A. Konkin, H. -K. Roth, M. Al-Ibrahim, U. Zhokhavets, G. Gobsch, V. I. Krinichnyi, G. A. Nazmutdinova, and E. Klemm: Synth. Met. Vol. 137 (2003), pp.1433-1434.

DOI: 10.1016/s0379-6779(02)01167-0

Google Scholar

[12] G. Dennler, S. Bereznev, D. Fichou, K. Holl, D. Ilic, R. Koeppe, and S. Taillemite: Sol. Energy Vol. 81 (2007), pp.947-957.

DOI: 10.1016/j.solener.2007.02.008

Google Scholar