[1]
F. Armknecht, "Improving fast algebraic attacks," FSE 2004, LNCS 3017, 2004, pp.65-82.
Google Scholar
[2]
N. Courtois, W. Meier, "Algebraic attacks on stream ciphers with linear feedback," Cryptology-EUROCRYPT 2003, LNCS 2656, 2003, pp.345-359.
DOI: 10.1007/3-540-39200-9_21
Google Scholar
[3]
N. Courtois, "Fast algebraic attacks on stream ciphers with linear feedback," Cryptology-CRYPTO 2003, LNCS 2729, 2003, pp.176-194.
DOI: 10.1007/978-3-540-45146-4_11
Google Scholar
[4]
L M. Batten, "Algebraic attacks over GF(q)," Cryptology-INDOCRYPT 2004, LNCS 3348, 2004, pp.84-91.
DOI: 10.1007/978-3-540-30556-9_8
Google Scholar
[5]
W. Meier, E. Pasalic, C. Carlet, "Algebraic attacks and decomposition of Boolean functions," Cryptology-EUROCRYPT 2004, LNCS 3027, 2004, pp.474-491.
DOI: 10.1007/978-3-540-24676-3_28
Google Scholar
[6]
D.K. Dalai, "Basic theory in construction of Boolean functions with maximum possible annihilator immunity," Designs, Codes and Cryptography, vol. 40, no. 1, 2006, pp.41-58.
DOI: 10.1007/s10623-005-6300-x
Google Scholar
[7]
L.J. Qu, C. Li, K.Q. Feng, "A note on symmetric Boolean functions with maximum algebraic immunity in odd number of variables," IEEE Transactions on Information Theory, vol. 53, no. 8, 2007, pp.2908-2910.
DOI: 10.1109/tit.2007.901189
Google Scholar
[8]
A. Bracken,B. Preneel B, "On the algebraic immunity of symmetric Boolean functions," INDOCRYPT 2005, LNCS 3797,2005, pp.35-48.
DOI: 10.1007/11596219_4
Google Scholar
[9]
L.J. Qu, K.Q. Feng, F. Liu and L. Wang, "Construction symmetric Boolean functions with maximum algebraic immunity," IEEE Transactions on Information Theory, vol.55, no. 5, 2009, pp.2406-2412.
DOI: 10.1109/tit.2009.2015999
Google Scholar
[10]
L.J. Qu, C. Li, "On the -variable Symmetric Boolean Functions with Maximum Algebraic Immunity," Science in China Series F-Information Sciences, vol.51, no.2, 2008, pp.120-127.
DOI: 10.1007/s11432-008-0010-8
Google Scholar
[11]
F. Liu, K.Q. Feng, "On the -variable symmetric Boolean functions with maximum algebraic immunity ," WCC 2007, 2007, pp.225-232.
Google Scholar
[12]
C. Carlet, "A method of construction of balanced functions with optimum algebraic immunity," the International Workshop on Coding and Cryptography, 2007, pp.25-43.
DOI: 10.1142/9789812832245_0003
Google Scholar
[13]
C. Carlet and X.Y. Zeng, "Further properties of several classes of Boolean functions with optimum AI," Design, Codes, Cryptography, vol. 52, no. 3, 2009, pp.303-338.
DOI: 10.1007/s10623-009-9284-0
Google Scholar
[14]
Y.J. Wang, S.Q. Fan, "New construction of Boolean function with optimum Algebraic Immunity," http://eprint.iacr.org/2008/176.pdf.
Google Scholar
[15]
S.J. Fu, C. Li, K. Matsuura, L.J. Qu, "Construction of Rotation Symmetric Boolean Functions with Maximum Algebraic Immunity," CANS 2009, LNCS 5888, 2009, pp.402-412.
DOI: 10.1007/978-3-642-10433-6_27
Google Scholar
[16]
X.W. Xiong, A.G. Wei, "Construction of Balanced Rotation Symmetric Boolean Functions with Good Cryptographic Properties," ACSA2011, in press.
Google Scholar
[17]
N. Li and L.J. Qu, "On the construction of Boolean functions with optimal algebraic immunity," IEEE Transactions on Information Theory, vol. 54, no. 3, 2008, pp.1330-1334.
DOI: 10.1109/tit.2007.915914
Google Scholar
[18]
N. Li, W.F. Qi, "Construction and Analysis of Boolean Functions of 2t+1 Variables with Maximum Algebraic Immunity," ASIACRYPT 2006, LNCS 4284, 2006, pp.82-98.
DOI: 10.1007/11935230_6
Google Scholar
[19]
S. Sarkar, S. Maitra, "Construction of Rotation Symmetric Boolean Functions on Odd Number of Variables with Maximum Algebraic Immunity," Algebra,Algebraic Algorithms and Error-Correcting Codes, LNCS 4851, 2007, pp.271-280.
DOI: 10.1007/978-3-540-77224-8_32
Google Scholar
[20]
C.L. Li, X.Y. Zeng, "A class of rotation symmetric Boolean functions with optimum Algebraic Immunity," Wuhan University Journal of Natural Sciences, vol.13, no.6, 2008, pp.702-706.
DOI: 10.1007/s11859-008-0613-3
Google Scholar
[21]
M.C. Liu, D.Y. Pei, "Identification and construction of Boolean functions with Maximum Algebraic Immunity," Science in China Series F-Information Sciences, vol. 53, no. 7, 2010, pp.1379-1396.
DOI: 10.1007/s11432-010-3106-x
Google Scholar
[22]
X.W. Xiong, C. Ma, X. Yang, "Some Results on the Number of Even-variable Boolean Functions with Maximum Algebraic Immunity," ICITIS2011, 2011, pp.281-285.
Google Scholar
[23]
C. Carlet and K.Q. Feng, "An infinite class of balanced functions with optimal algebraic immunity,good immunity to fast algebraic attacks and good nonlinearity," ASIACRYPT 2008, LNCS 5350, 2007, pp.425-440.
DOI: 10.1007/978-3-540-89255-7_26
Google Scholar
[24]
Z.R. Tu, Y.P. Deng, "A conjecture on binary string and its applications on constructing Boolean
v\ functions of optimum AI," Designs, Codes and Cryptography, vol. 60, no. 1, 2011, pp.1-14.
DOI: 10.1007/s10623-010-9413-9
Google Scholar