[1]
O. Majdalawieh, J. Gu, T. Bai, and G. Cheng, Biomedical signal processing and rehabilitation engineering: a review, in Proceedings of IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, (Victoria, Canada), p.1004–1007, August (2003).
DOI: 10.1109/pacrim.2003.1235954
Google Scholar
[2]
C. Levkov, G. Mihov, R. Ivanov, I. Daskalov, I. Christov, and I. Dotsinsky, Removal of power-line interference from the ECG: a review of the subtraction procedure, BioMedical Engineering OnLine, vol. 4, p.1–8, August (2005).
DOI: 10.1186/1475-925x-4-50
Google Scholar
[3]
J. C. Nunes, E. Deléchelle, Empirical mode decomposition: Applications on signal and image processing, Advances in Adaptive Data Analysis, Vol. 1, pp.125-175, January (2009).
DOI: 10.1142/s1793536909000059
Google Scholar
[4]
D. M. Klionski, N. I. Oreshko, V. V. Geppener and A. V. Vasiljev, Applications of empirical mode decomposition for processing nonstationary signals, Pattern Recognition and Image Analysis, Vol. 18, pp.390-399, September (2008).
DOI: 10.1134/s105466180803005x
Google Scholar
[5]
L. He, M. Lech, C. M Namunu., B. A. Nicholas, Study of empirical mode decomposition and spectral analysis for stress and emotion classification in natural speech, Biomedical Signal Processing and Control, Vol. 6, pp.139-146, April (2011).
DOI: 10.1016/j.bspc.2010.11.001
Google Scholar
[6]
R. Fonseca-Pinto, J. L. Ducla-Soares, F. Araújo, P. Aguiar and A. Andrade, On the influence of time-series length in EMD to extract frequency content: Simulations and models in biomedical signals, Medical Engineering and Physics, Vol. 31, pp.713-719, July (2009).
DOI: 10.1016/j.medengphy.2009.02.001
Google Scholar
[7]
W. F Wu., X. H. Chen and X. J. Su, Blind source separation of single-channel mechanical signal based on empirical mode decomposition, Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, Vol. 47, pp.12-16, February , (2011).
DOI: 10.3901/jme.2011.04.012
Google Scholar
[8]
Y. L. Ye, Z. L. Zhang, J. Z. Zeng, and L. Peng, A fast and adaptive ICA algorithm with its application to fetal electrocardiogram extraction, Applied Mathematics and Computation. J. China, vol 205, n 2, pp.799-806, May (2008).
DOI: 10.1016/j.amc.2008.05.117
Google Scholar
[9]
S. Faul, G. Boylan, S. Connolly, L. Marnane, and G. Lightbody, Computer-aided seizure detection in newborn infants, in 2004 IEEE Irish Signals and Systems Conference, Belfast, Northern Ireland, p.428–433, June (2004).
DOI: 10.1049/cp:20040580
Google Scholar
[10]
N. E HUANG, The Empirical mode decomposition and the Hilbert spectrum for nonlinear for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, 1998, (454): 903-995.
DOI: 10.1098/rspa.1998.0193
Google Scholar
[11]
C. Francisco. C. Antonio. M. José, The role of independent component analysis in the signal processing of ECG recordings, Biomedizinische Technik. J. Valencia, Spain. vol 52, n 1, pp.18-24, Febrary , (2007).
DOI: 10.1515/bmt.2007.005
Google Scholar
[12]
L. Lathauwer, Database for the Identification of Systems: FECG data EAST/SISTA K.U. Leuven, Belgium[Online]. Available: http: /www. esat. kuleuven. ac. be/sista/daisy.
Google Scholar