[1]
F. Lekien, J. Marsden,: Tricubic Interpolation in Three Dimensions, J. Numer. Meth. Engin., Vol. 63 (3), (2005), pp.455-471.
DOI: 10.1002/nme.1296
Google Scholar
[2]
A Kadosh, D Cohen-Or yagel,: Tricubic Interpolation of Discrete Surfaces for Binary Volumes, IEEE Trans. Visual. Comput. Graph., Vol. 9( 4), (2003), pp.580-586.
DOI: 10.1109/tvcg.2003.1260750
Google Scholar
[3]
R.H. Wang, J. Qian,: On Branched Continued Fractions Rational Interpolation Over Pyramid type Grids, Numer. Algor., Vol. 54(1) , (2010) , pp.47-72.
DOI: 10.1007/s11075-009-9322-z
Google Scholar
[4]
B. Z, Pan,: Trivariate Continued Fractions Interpolation on Rectangular Parallelepiped Grid, Comm. on Appl. Math. Comput. Vol. 4(1), (2000), pp.143-48.
Google Scholar
[5]
P. Cantrell, N. Weininger, T. Nemeth-Csýori,: A Tricubic Interpolation Algorithm for MR Image Cross Sections Scattered Data Interpolation in Three or More Variables, The UMAP J., Vol. 19, 3, (2002), pp.237-254.
Google Scholar
[6]
J. Q. Tan,: Theory of Continued Fractions and its Applications, ( Science Publishers, Beijing, 2007. ).
Google Scholar
[7]
C. Schneider, W. Werne, r: Some New Aspects of Rational Interpolation, Math. Comput. Vol. 175(47) , (1986), pp.285-299.
Google Scholar
[8]
M. S Floater, K. Hormann,: Barycentric Rational Interpolation With No Poles and High Rates of Approximation, Numer. Math., Vol. 107, (2007), pp.315-331.
DOI: 10.1007/s00211-007-0093-y
Google Scholar
[9]
J.P. Berrut, R. Baltensperger, H. D. Mittelmann,: Recent Developments in Barycentric Rational Interpolation, Trends and Applications in Constructive Approximation[C]/. Bruin de M G, Mache D H , Szabados J , et al. International Series of Numerical Mathematics. Birkhauser: Verlag Basel, (2005).
DOI: 10.1007/3-7643-7356-3_3
Google Scholar
[10]
J.P. Berrut, L. N. Trefethen,: Barycentric Lagrange Interpolation, SIAM Review, Vol. 46(3), (2004), pp.501-517.
DOI: 10.1137/s0036144502417715
Google Scholar
[11]
H.T. Nguyen, A. Cuyt, O. S. Celis,: Shape Control in Multivariate Barycentric Rational Interpolation, International Confeence of Numerical Analysis and Applied Mathematics, Vol. 1281, (2010), pp.543-548.
DOI: 10.1063/1.3498533
Google Scholar
[12]
G.Q. Zhu, J.Q. Tan,: A Note on Matrix-valued Rational Interpolants, J. Comput. Appl. Math., Vol. 110(1), (1999), pp.129-140.
Google Scholar