A New Approach to Trivariate Blending Rational Interpolation

Article Preview

Abstract:

The advantages of barycentric interpolation formulations in computation are small number of floating points operations and good numerical stability. Adding a new data pair, the barycentric interpolation formula don’t require to renew computation of all basis functions. Thiele-type continued fractions interpolation and Newton interpolation may be the favoured nonlinear and linear interpolation. A new kind of trivariate blending rational interpolants were constructed by combining barycentric interpolation, Thiele continued fractions and Newton interpolation. We discussed the interpolation theorem, dual interpolation, no poles of the property and error estimation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 546-547)

Pages:

570-575

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Lekien, J. Marsden,: Tricubic Interpolation in Three Dimensions, J. Numer. Meth. Engin., Vol. 63 (3), (2005), pp.455-471.

DOI: 10.1002/nme.1296

Google Scholar

[2] A Kadosh, D Cohen-Or yagel,: Tricubic Interpolation of Discrete Surfaces for Binary Volumes, IEEE Trans. Visual. Comput. Graph., Vol. 9( 4), (2003), pp.580-586.

DOI: 10.1109/tvcg.2003.1260750

Google Scholar

[3] R.H. Wang, J. Qian,: On Branched Continued Fractions Rational Interpolation Over Pyramid type Grids, Numer. Algor., Vol. 54(1) , (2010) , pp.47-72.

DOI: 10.1007/s11075-009-9322-z

Google Scholar

[4] B. Z, Pan,: Trivariate Continued Fractions Interpolation on Rectangular Parallelepiped Grid, Comm. on Appl. Math. Comput. Vol. 4(1), (2000), pp.143-48.

Google Scholar

[5] P. Cantrell, N. Weininger, T. Nemeth-Csýori,: A Tricubic Interpolation Algorithm for MR Image Cross Sections Scattered Data Interpolation in Three or More Variables, The UMAP J., Vol. 19, 3, (2002), pp.237-254.

Google Scholar

[6] J. Q. Tan,: Theory of Continued Fractions and its Applications, ( Science Publishers, Beijing, 2007. ).

Google Scholar

[7] C. Schneider, W. Werne, r: Some New Aspects of Rational Interpolation, Math. Comput. Vol. 175(47) , (1986), pp.285-299.

Google Scholar

[8] M. S Floater, K. Hormann,: Barycentric Rational Interpolation With No Poles and High Rates of Approximation, Numer. Math., Vol. 107, (2007), pp.315-331.

DOI: 10.1007/s00211-007-0093-y

Google Scholar

[9] J.P. Berrut, R. Baltensperger, H. D. Mittelmann,: Recent Developments in Barycentric Rational Interpolation, Trends and Applications in Constructive Approximation[C]/. Bruin de M G, Mache D H , Szabados J , et al. International Series of Numerical Mathematics. Birkhauser: Verlag Basel, (2005).

DOI: 10.1007/3-7643-7356-3_3

Google Scholar

[10] J.P. Berrut, L. N. Trefethen,: Barycentric Lagrange Interpolation, SIAM Review, Vol. 46(3), (2004), pp.501-517.

DOI: 10.1137/s0036144502417715

Google Scholar

[11] H.T. Nguyen, A. Cuyt, O. S. Celis,: Shape Control in Multivariate Barycentric Rational Interpolation, International Confeence of Numerical Analysis and Applied Mathematics, Vol. 1281, (2010), pp.543-548.

DOI: 10.1063/1.3498533

Google Scholar

[12] G.Q. Zhu, J.Q. Tan,: A Note on Matrix-valued Rational Interpolants, J. Comput. Appl. Math., Vol. 110(1), (1999), pp.129-140.

Google Scholar