Theoretical Investigations of Methane Conversion to Heavier Hydrocarbons in a Plasma Reactor

Article Preview

Abstract:

In this study, mathematical modelling of oxidative coupling of methane (OCM) to C2 hydrocarbons (C2H6 and C2H4) over La2O3/CaO catalyst in a fixed-bed reactor operated under isothermal and non-isothermal conditions was investigated using the MATLAB program. In this process, methane and acetylene were the inputted feed and ethane, ethylene, propylene, propane, i-butane and n-butane were the output products. The amount of methane conversion obtained was 12.7% for the former feed however; if pure methane was inputted this conversion rose to 13.8%. Furthermore, the plasma process would enhance the conversion, selectivity towards desired product and process yield. A comparison between the thermal and the plasma process showed that the methane conversion and production yield in the plasma were higher than in the thermal process under the same operating conditions. Finally, the results of the catalytic OCM and methane conversion processes in the plasma phase were compared with one another.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-159

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.A. Sofranko, J.J. Leonard and C.A. Jones: J. Catal. Vol. 103 (1987), p.302.

Google Scholar

[2] Z. Hong-Sheng, W. Ji-Xiang, D.J. Driscoll and J.H. Lunsford: J. Catal. Vol. 112 (1988), p.366.

Google Scholar

[3] C. -H. Lin, J. -X. Wang and J.H. Lunsford: J. Catal. Vol. 111 (1988), p.302.

Google Scholar

[4] Holmen, O. Olsvik and O.A. Rokstad: Fuel Process. Technol. Vol. 42 (1995), p.249.

Google Scholar

[5] S.Y. Savinov, H. Lee, H.K. Song and B. -K. Na: Ind. Eng. Chem. Res. Vol. 38 (1999), p.2540.

Google Scholar

[6] Liu, A. Marafee, B. Hill, G. Xu, R. Mallinson and L. Lobban: Ind. Eng. Chem. Res. Vol. 35 (1996), p.3295.

DOI: 10.1021/ie960138j

Google Scholar

[7] Liu, A. Marafee, R. Mallinson and L. Lobban: Appl. Catal. A-Gen. Vol. 164 (1997), p.21.

Google Scholar

[8] Liu, R. Mallinson and L. Lobban: Appl. Catal. A-Gen. Vol. 178 (1999), p.17.

Google Scholar

[9] C. Liu, R. Mallinson and L. Lobban: J. Catal. Vol. 179 (1998), p.326.

Google Scholar

[10] Marafee, C. Liu, G. Xu, R. Mallinson and L. Lobban: Ind. Eng. Chem. Res. Vol. 36 (1997), p.632.

Google Scholar

[11] S. -S. Kim, H. Lee, B. -K. Na and H.K. Song: Korean J. Chem. Eng. Vol. 20 (2003), p.869.

Google Scholar

[12] S. -S. Kim, H. Lee, J. -W. Choi, B. -K. Na and H.K. Song: J. Ind. Eng. Chem. Vol. 9 (2003), p.787.

Google Scholar

[13] S. -S. Kim, H. Lee, B. -K. Na and H.K. Song: Catal. Today Vol. 89 (2004), p.193.

Google Scholar

[14] C. Shen, D. Sun and H. Yang: J. Nat. Gas Chem. Vol. 20 (2011), p.449.

Google Scholar

[15] J. Huang, M.V. Badani, S.L. Suib, J.B. Harrison and M. Kablauoi: J. Phys. Chem. Vol. 98 (1994), p.206.

Google Scholar

[16] J.M. Santamaria, E.E. Miro and E.E. Wolf: Ind. Eng. Chem. Res., Vol. 30 (1991), p.1157.

Google Scholar

[17] J. Coronas, M. Menéndez, and J. Santamaria: Chem. Eng. Sci. Vol. 49 (1994), p. (2015).

Google Scholar

[18] M. Kazemeini and A.R. Mohammadi: Iran. J. Chem. Eng. Vol. 2 (2005), p.3.

Google Scholar

[19] S. Seyednejadian, N. Yaghobi, R. Maghrebi and L. Vafajoo: J. Nat. Gas Chem. Vol. 20 (2011), p.356.

Google Scholar

[20] Indarto, N. Coowantiwong, J. -W. Choi, H. Lee and H.K. Song: Fuel Process. Technol. Vol. 89 (2008), p.214.

Google Scholar

[21] C.T. Tye, A.R. Mohamed and S. Bhatia: Chem. Eng. J. Vol. 87 (2002), p.49.

Google Scholar

[22] Z. Stansch, L. Mleczko and M. Baerns: Ind. Eng. Chem. Res. Vol. 36 (1997), p.2568.

Google Scholar