Strain Rate Sensitivity of an Aluminium Alloy under Compressive Loads

Article Preview

Abstract:

An experimental investigation on the dynamic compressive behaviour of the aluminium alloy, AA6063-T6 in the strain rate range from 0.001s-1 to 850s-1 is reported here. Cylindrical specimens of AA6063-T6 are tested under universal testing machine at quasi-static (0.001s-1) condition, whereas, experiments at high strain rates (110s-1,400s-1,550s-1,700s-1 and 850s-1) are conducted on the traditional split Hopkinson pressure bar setup. The strain hardening in the material is found to increase with increasing strain rate. It is observed that the existing Johnson-Cook material model with appropriate material parameters predicts the dynamic compressive flow stress of AA6063-T3 aluminium alloy precisely.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

169-173

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] U. S. Lindholm, Some experiments with the split Hopkinson pressure bar. Journal of the Mechanics and Physics of Solids, Vol. 12 (1964), pp.317-335.

DOI: 10.1016/0022-5096(64)90028-6

Google Scholar

[2] A. Rosen and S. R. Bodner, The influence of strain rate and strain aging on the flow stress of commercially-pure aluminium. Journal of the Mechanics and Physics of Solids, Vol. 15 (1967), pp.47-62.

DOI: 10.1016/0022-5096(67)90005-1

Google Scholar

[3] J. D. Campbell and A. R. Dowling, The behavior of materials subjected to dynamic incremental shear loading. Journal of the Mechanics and Physics of Solids, Vol. 18 (1970), pp.43-63.

DOI: 10.1016/0022-5096(70)90013-x

Google Scholar

[4] G. L. Wulf, The high strain rate compression of 7039 aluminium. International Journal of Mechanical Sciences, Vol. 20 (1978), pp.609-615.

DOI: 10.1016/0020-7403(78)90019-x

Google Scholar

[5] W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design Testing and Applications, Springer, New York (2011).

Google Scholar

[6] M. M. Moshksar, The effect of strain rate on the mechanical behavior of A1-Si alloy. Journal of Materials Processing Technology, Vol. 36 (1993), pp.383-393.

DOI: 10.1016/0924-0136(93)90053-9

Google Scholar

[7] V. S. Deshpande and N. A. Fleck, High strain rate compressive behaviour of aluminium alloy foams. International Journal of Impact Engineering, Vol. 24 (2000), pp.277-298.

DOI: 10.1016/s0734-743x(99)00153-0

Google Scholar

[8] L. D. Oosterkamp, A. Ivankovic and G. Venizelos, High strain rate properties of selected aluminium alloys. Materials Science and Engineering, Vol. A278 (2000), pp.225-235.

DOI: 10.1016/s0921-5093(99)00570-5

Google Scholar

[9] F. Yi, Z. Zhu, F. Zu, S. Hu and P. Yi, Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Materials Characterization, Vol. 47 (2001), pp.417-422.

DOI: 10.1016/s1044-5803(02)00194-8

Google Scholar

[10] X-M Zhang, H-J Li, H-Z Li, H. Gao, Z-G Gao, Y. Liu and B. Liu, Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar. Trans Nonferrous Met. Soc. China, Vol. 18 (2008), pp.1-5.

DOI: 10.1016/s1003-6326(08)60001-1

Google Scholar

[11] O. S. Lee and M. S. Kim, Dynamic material property characterization by using split Hopkinson pressure bar (SHPB) technique. Nuclear Engineering and Design, Vol. 226 (2003), p.119–125.

DOI: 10.1016/s0029-5493(03)00189-4

Google Scholar

[12] T. Børvik, O.S. Hopperstad and K. O. Pedersen, Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates. International Journal of Impact Engineering, Vol. 37 (2010), pp.537-551.

DOI: 10.1016/j.ijimpeng.2009.11.001

Google Scholar

[13] E. El-Magd and M. Abouridouane, Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. International Journal of Impact Engineering, Vol. 32 (2006).

DOI: 10.1016/j.ijimpeng.2005.03.008

Google Scholar

[14] N. K. Singh, E. Cadoni, M. K. Singha and N. K. Gupta, Dynamic tensile behavior of multi phase high yield strength steel. Materials and Design, Vol. 32 (2011), pp.5091-5098.

DOI: 10.1016/j.matdes.2011.06.027

Google Scholar

[15] E. Cadoni, M. Dotta, D. Forni and S. Bianchi, Strain-rate effect on high strength alloys. Applied Mechanics and Materials, Vol. 82 (2011), pp.124-129.

DOI: 10.4028/www.scientific.net/amm.82.124

Google Scholar