[1]
U. S. Lindholm, Some experiments with the split Hopkinson pressure bar. Journal of the Mechanics and Physics of Solids, Vol. 12 (1964), pp.317-335.
DOI: 10.1016/0022-5096(64)90028-6
Google Scholar
[2]
A. Rosen and S. R. Bodner, The influence of strain rate and strain aging on the flow stress of commercially-pure aluminium. Journal of the Mechanics and Physics of Solids, Vol. 15 (1967), pp.47-62.
DOI: 10.1016/0022-5096(67)90005-1
Google Scholar
[3]
J. D. Campbell and A. R. Dowling, The behavior of materials subjected to dynamic incremental shear loading. Journal of the Mechanics and Physics of Solids, Vol. 18 (1970), pp.43-63.
DOI: 10.1016/0022-5096(70)90013-x
Google Scholar
[4]
G. L. Wulf, The high strain rate compression of 7039 aluminium. International Journal of Mechanical Sciences, Vol. 20 (1978), pp.609-615.
DOI: 10.1016/0020-7403(78)90019-x
Google Scholar
[5]
W. Chen and B. Song, Split Hopkinson (Kolsky) Bar: Design Testing and Applications, Springer, New York (2011).
Google Scholar
[6]
M. M. Moshksar, The effect of strain rate on the mechanical behavior of A1-Si alloy. Journal of Materials Processing Technology, Vol. 36 (1993), pp.383-393.
DOI: 10.1016/0924-0136(93)90053-9
Google Scholar
[7]
V. S. Deshpande and N. A. Fleck, High strain rate compressive behaviour of aluminium alloy foams. International Journal of Impact Engineering, Vol. 24 (2000), pp.277-298.
DOI: 10.1016/s0734-743x(99)00153-0
Google Scholar
[8]
L. D. Oosterkamp, A. Ivankovic and G. Venizelos, High strain rate properties of selected aluminium alloys. Materials Science and Engineering, Vol. A278 (2000), pp.225-235.
DOI: 10.1016/s0921-5093(99)00570-5
Google Scholar
[9]
F. Yi, Z. Zhu, F. Zu, S. Hu and P. Yi, Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foams. Materials Characterization, Vol. 47 (2001), pp.417-422.
DOI: 10.1016/s1044-5803(02)00194-8
Google Scholar
[10]
X-M Zhang, H-J Li, H-Z Li, H. Gao, Z-G Gao, Y. Liu and B. Liu, Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar. Trans Nonferrous Met. Soc. China, Vol. 18 (2008), pp.1-5.
DOI: 10.1016/s1003-6326(08)60001-1
Google Scholar
[11]
O. S. Lee and M. S. Kim, Dynamic material property characterization by using split Hopkinson pressure bar (SHPB) technique. Nuclear Engineering and Design, Vol. 226 (2003), p.119–125.
DOI: 10.1016/s0029-5493(03)00189-4
Google Scholar
[12]
T. Børvik, O.S. Hopperstad and K. O. Pedersen, Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates. International Journal of Impact Engineering, Vol. 37 (2010), pp.537-551.
DOI: 10.1016/j.ijimpeng.2009.11.001
Google Scholar
[13]
E. El-Magd and M. Abouridouane, Characterization, modelling and simulation of deformation and fracture behaviour of the light-weight wrought alloys under high strain rate loading. International Journal of Impact Engineering, Vol. 32 (2006).
DOI: 10.1016/j.ijimpeng.2005.03.008
Google Scholar
[14]
N. K. Singh, E. Cadoni, M. K. Singha and N. K. Gupta, Dynamic tensile behavior of multi phase high yield strength steel. Materials and Design, Vol. 32 (2011), pp.5091-5098.
DOI: 10.1016/j.matdes.2011.06.027
Google Scholar
[15]
E. Cadoni, M. Dotta, D. Forni and S. Bianchi, Strain-rate effect on high strength alloys. Applied Mechanics and Materials, Vol. 82 (2011), pp.124-129.
DOI: 10.4028/www.scientific.net/amm.82.124
Google Scholar