The Influence of Skin Effect on Via-Vicinity-Interfaces Current Density of Cu Interconnects

Article Preview

Abstract:

This paper presents a research on skin effect’s influence on the current density distribution of Cu/barrier layer and Cu/cap layer interfaces of copper interconnects’ via vicinities. A two-level Cu-interconnect structure in different positional relationships with the ground plane is discussed. Through the three-dimensional (3D) finite element simulation of the interconnect structure, the variations of current density on three important surface areas are obtained when skin effect is significant, showing that the current density in the three surface areas near the via has been strongly influenced by current crowding and skin effect. So in many cases the influence of skin effect on via top and via bottom failures of Cu interconnects under high frequencies can not be ignored.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

551-554

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Glickman and M. Nathan: J. Appl. Phys. Vol. 80 (1996), p.3782.

Google Scholar

[2] M.W. Lane, E. G. Liniger, and J. R. Lloyd: J. Appl. Phys. Vol. 93(2003), p.1417.

Google Scholar

[3] K. N. Tu, C. C. Yeh, C. Y. Liu, and Chih Chen: Appl. Phys. Lett. Vol. 76(2000), p.988.

Google Scholar

[4] Cher Ming Tan, Arijit Roy, A. V. Vairagar, Ahila Krishnamoorthy, and Subodh G. Mhaisalkar: IEEE Trans. Dev. Mat. Rel. Vol. 5(2005), p.198.

DOI: 10.1109/tdmr.2005.846830

Google Scholar

[5] C. L. Gan, C. V. Thompson, K. L. Pey, W. K. Choi, H. L. Tay, B. Yu, and M. K. Radhakrishnan: Appl. Phys. Lett. Vol. 79(2001), p.4592.

Google Scholar

[6] S. P. Hau-Riege: J. Appl. Phys. Vol. 91(2002), p. (2014).

Google Scholar

[7] K. Lee, E. T. Ogawa, H. Matsuhashi, P. R. Justison, K. Ko, P. S. Ho, and V. A. Blaschke: Appl. Phys. Lett. Vol. 79(2001), p.3236.

DOI: 10.1063/1.1418034

Google Scholar

[8] M. A. Meyer, M. Herrmann, E. Langer, and E. Zschech: Microelectron. Eng. Vol. 64(2002), p.375.

Google Scholar

[9] R. G. Filippi, P. -C. Wang, A. Brendler, P. S. McLaughlin, J. Poulin, B. Redder, J. R. Lloyd, and J. J. Demarest: Proc. 47th IEEE Reliability Physics Annual Meeting (2009), p.444.

DOI: 10.1109/irps.2009.5173295

Google Scholar

[10] J. R. Black: Proc. IEEE Vol. 57(1969), p.1587.

Google Scholar

[11] M. Yao, X. Zhang, C. Zhao, J. Ma: Microelectron. Rel. Vol. 51(2001), p.1003.

Google Scholar

[12] Harold A. Wheeler: Proc. Inst. Rad. Eng. Vol. 30(1942), p.412.

Google Scholar

[13] Dana RF, Chow YL: IEEE Trans. Microw. Theory Tech. Vol. 38(1990), p.1268.

Google Scholar

[14] Eo Youngseon, Eisenstadt WR: IEEE Trans. Compon. Hybr. Manuf. Tech. Vol. 16(1993), p.555.

Google Scholar