[1]
Kennedy J, Eberhart R C. Particle swarms optimization Proceedings of IEEE international conference on Neural Networks. USA, 1995: 1942-(1948).
Google Scholar
[2]
论文集中的析出文献 Shi X H, Liang Y C, Lee H P, et al. Particle swarm optimization-based algorithms for TSP and generalized TSP [J]. Information Processing Letters, 2007, 103(5): 169-176.
DOI: 10.1016/j.ipl.2007.03.010
Google Scholar
[3]
Lin S W, Ying K C, Chen S C, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines [J]. Expert Systems with Applications, 2008, 35(4): 1817-1824.
DOI: 10.1016/j.eswa.2007.08.088
Google Scholar
[4]
Falco I D, Cioppa A D, Tarantino E. Facing classification problems with particle swarm optimization [J]. Applied Soft Computing, 2007, 7(3): 652-658.
DOI: 10.1016/j.asoc.2005.09.004
Google Scholar
[5]
Jiang M, Luo Y P, Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm [J]. Information Processing Letters, 2007, 102(1): 8-16.
DOI: 10.1016/j.ipl.2006.10.005
Google Scholar
[6]
Lu Z S, Hou Z R. Particle swarm optimization with adaptive mutation [J]. Acta Electronica Sinica, 2004, 32(3): 416-420.
Google Scholar
[7]
Liu B, Wang L, Jin Y H, et al. Improved particle swarm optimization combined with chaos [J]. Chaos Solitons & Fractals, 2005, 25(5): 1261-1271.
DOI: 10.1016/j.chaos.2004.11.095
Google Scholar
[8]
Luo Q, Yi D Y. A co-evolving framework for robust particle swarm optimization [J]. Applied Mathematics and Computation, 2008, 199(2): 611-622.
DOI: 10.1016/j.amc.2007.10.017
Google Scholar
[9]
Li L L, Wang L, Liu L H. An effective hybrid PSOGA strategy for optimization and its application to parameter estimation [J]. Applied Mathematics and Computation, 2006, 179(1): 135-146.
DOI: 10.1016/j.amc.2005.11.086
Google Scholar
[10]
Eberhart R C. Comparing inertia weights and constriction factors in particle swarm optimization USA: IEEE Press, 2000: 84-88.
DOI: 10.1109/cec.2000.870279
Google Scholar