Phosphine-Free Synthesis and Photoluminescence Properties of ZnSe:Cu/ZnSe/ZnS Core/Shell Nanocrystals

Article Preview

Abstract:

High quality zinc blende ZnSe nanocrystals were successfully synthesized using an environmentally friendierly phosphine-free method. Using pre-synthesized ZnSe nanocrystals as core to dope Cu2+ ions, we obtained ZnSe:Cu/ZnSe and ZnSe:Cu/ZnSe/ZnS core/shell nanocrystals. Absorption spectruscopy, photoluminescence (PL) spectruscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to characterize the structures and properties of as-synthesized three kinds of nanocrystals. The results demonstrated that nanocrystals had well dispersion and narrow size-distributions, and the PL emission peak of as-synthesized ZnSe:Cu/ZnSe/ZnS core/shell nanocrystals could be easily tuned from 480 nm to 520 nm by using different sized ZnSe cores.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-16

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.E. Brus, Journal of Chemical Physics, Vol. 80 (1984), p.7.

Google Scholar

[2] R.C. Somers, M.G. Bawendi and D.G. Nocera, Chem. Soc. Rev. Vol. 36 (2007), p.579.

Google Scholar

[3] F. Pinaud, X. Michalet, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Iyer and S. Weiss, Biomaterials Vol. 27 (2006), p.1679.

DOI: 10.1016/j.biomaterials.2005.11.018

Google Scholar

[4] S. Nizamoglu, G. Zengin and H.V. Demir, Appl Phys Lett Vol. 92 (2008), p.031102.

Google Scholar

[5] D.M. Yeh, C.F. Huang, Y.C. Lu and C. Yang, Appl Phys Lett Vol. 92 (2008), p.091112.

Google Scholar

[6] I. Gur, N.A. Fromer, M.L. Geier and A.P. Alivisatos, Science Vol. 310 (2005), p.462.

Google Scholar

[7] D.J. Milliron, I. Gur and A.P. Alivisatos, Mrs Bull Vol. 30 (2005), p.41.

Google Scholar

[8] G. Nair, L.Y. Chang, S.M. Geyer and M.G. Bawendi, Nano Letters Vol. (2011), p.2145.

Google Scholar

[9] C.B. Murray, D.J. Norris and M.G. Bawendi, Journal of the American Chemical Society Vol. 115 (1993), p.8706.

Google Scholar

[10] J. Hambrock, A. Birkner and R.A. Fischer, J Mater Chem Vol. 11 (2001), p.3197.

Google Scholar

[11] L. Qu, Z. Peng and X. Peng, Nano Letters Vol. 1 (2001), p.333.

Google Scholar

[12] C.R. Bullen and P. Mulvaney, Nano Letters Vol. 4 (2004), p.2303.

Google Scholar

[13] S.L. Lin, N. Pradhan, Y.J. Wang and X.G. Peng, Nano Letters Vol. 4 (2004), p.2261.

Google Scholar

[14] P.D. Cozzoli, L. Manna, M.L. Curri, S. Kudera, C. Giannini, M. Striccoli and A. Agostiano, Chem Mater Vol. 17 (2005), p.1296.

DOI: 10.1021/cm047874v

Google Scholar

[15] L. Zu, D.J. Norris, T.A. Kennedy, S.C. Erwin and A.L. Efros, Nano Lett Vol. 6 (2006), p.334.

Google Scholar

[16] N. Pradhan, D.M. Battaglia, Y. Liu and X. Peng, Nano Lett Vol. 7 (2007), p.312.

Google Scholar

[17] N. Pradhan and X. Peng, J Am Chem Soc Vol. 129 (2007), p.3339.

Google Scholar

[18] Q.Q. Dai, N.R. Xiao, J.J. Ning, C.Y. Li, D.M. Li, B. Zou, W.W. Yu, S.H. Kan, H.Y. Chen, B.B. Liu and G.T. Zou, J Phys Chem C Vol. 112 (2008), p.7567.

Google Scholar

[19] P.T.K. Chin, J.W. Stouwdam and R.A.J. Janssen, Nano Letters Vol. 9 (2009), p.745.

Google Scholar

[20] V.R. Hering, T.E.S. Faulin, E.R. Triboni, S.D. Rodriguez, D.L. Bernik, R.I. Schumacher and V.P. Mammana, Bioconjugate Chem Vol. 20 (2009), p.1237.

DOI: 10.1021/bc9001085

Google Scholar