Synthesis of M-Toluidine-Aniline Chirality Copolymers Induced by D-Camphorsulfonic Acid

Article Preview

Abstract:

The copolymerization reaction of m-toluidine and aniline has been induced by D-camphorsulfonic acid. When the total concentrations of the acid, the oxidant and the monomer were maintained, the ratio of two types of monomers was varied to realize the structure and property control of m-toluidine-aniline copolymers. FTIR, UV-Vis, CD and SEM were utilized to characterize the products. The results showed that the synthesized copolymers were of fiber and tube structure with the diameter of approximately 70 nm. The introduction of methyl moiety in the molecular chain of benzene weakened the conjugation and blue shifts were observed in both FTIR and UV-Vis spectra. Besides, CD spectra verified the chirality of the copolymers. Negative cotton effect could be discerned at 400 nm and the chirality inversed when [m-An]/[An]=1:5.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-166

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook, S. Lifson, Science 268 (1995) 1860-1866.

Google Scholar

[2] Y. Okamoto, E. Yashima, Angew. Chem. Int. Ed. 37 (1998) 1020-1043.

Google Scholar

[3] A. G. MacDiarmid, S. Mu, N. L. D. Somasiri, W. Wu, Mol. Cryst. Liq. 121 (1985) 187-194.

Google Scholar

[4] R. J. Tseng, J. Huang, J. Ouyang, R. J. Kaner, Y. Yang, Nano Lett. 5 (2005) 1077-1080.

Google Scholar

[5] M. Wan, J. Li, S. Li, Polym. Adv. Technol. 12 (2001) 651-657.

Google Scholar

[6] H. Chang, Y. Yuan, N. Shi, Y. Guan, Anal. Chem. 79 (2007) 5111-5115.

Google Scholar

[7] J. Huang, S. Viriji, B. H. Weiller, R. B. Kaner, Chem. Eur. J. 10 (2004) 1314-1319.

Google Scholar

[8] A. Charles,Mire, A.P. Leon,Kane-Maguire, G.G. Wallace, Marc in het Panhuis. Synth Met159(2009)715–717.

Google Scholar

[9] J. Huang, V. Egan, H. Guo, J. Y. Yoon, A. L. Briseno, I. E. Rauda, R. L. Garrell, C. M. Knobler, F. Zhou, R. B. Kaner, Adv. Mater. 15 (2003) 1158-1161.

DOI: 10.1002/adma.200304835

Google Scholar

[10] J. Huang, S. Virji, B.H. Weiller, R.B. Kaner, J. Am. Chem. Soc. 125 (2003) 314-315.

Google Scholar

[11] T. Moriuchi, X. Shen, T. Hirao, Tetrahedron 62 (2006) 12237-12246.

Google Scholar

[12] J. Stejskal, I. Sapurina, M. Trchova, E. N. Konyushenko, Macromolecules 41 (2008) 3530-3536.

Google Scholar

[13] Y. Cao, P. Smith, A. J. Heeger, Synth. Met. 57 (1993) 3514-3519.

Google Scholar

[14] J. C. Chiang, A. G. MacDiarmid, Synth. Met. 13 (1986) 193-205.

Google Scholar

[15] Y. N. Xia, J. M. Wiesinger, A. G. MacDiarmid, A. J. Epstein, Chem. Mater. 7 (1995) 443-445.

Google Scholar

[16] J. RaultBerthelot, E. Raoult, J. TahriHassani, H. Le Deit, J. Simonet, Electrochim. Acta, 44 (1999) 3409-3419.

Google Scholar