Studies on Electrooxidation Reaction of 4-Chlorophenol on Carbon Electrode by In Situ FTIR

Article Preview

Abstract:

Electrooxidation of 4-chlorophenol in acidic solution was studied by cyclic voltammetry and in situ FTIR spectroscopy. Compared with platinum (Pt) and glassy carbon (GC) electrodes, carbon electrode exhibited a high electrocatalytic activity during the electrooxidation reaction of 4-chlorophenol. The possible mechanism of 4-chlorophenol on carbon electrode was studies by in situ FTIR. At first, 4-chlorophenol was electrooxidized to 4-chlorophenolic radical, and then to phenoxylic radical. Then, the radical was electrooxidized to hydroquinone, benzoquinone or unsaturated carboxylic acids with potential increasing. In addition, with the reaction of phenoxyl radicals, the insoluble aromatic ether oligomer generated on the carbon electrode surface and prevented the further oxidation reaction of 4-CP in some degree.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

370-373

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Zhou, D. Wang, M. Zhou, X. Yan, W. Zhao: Techniques and Equipment for Environment Pollution Control Vol. 2 (2001), p.15.

Google Scholar

[2] L. Fang, J. Huang, G. Yu, L.N. Wang. Chemosphere Vol. 71 (2008), p.259.

Google Scholar

[3] H. Cheng, K. Scott and P.A. Christensen: Electrochim. Acta Vol 49 (2004), p.731.

Google Scholar

[4] R.T. Benedict, H.M. Stapleton, R.J. Letcher and C.L. Mitchelmore: Chemosphere Vol. 69 (2007), p.988.

Google Scholar

[5] K. Peeters, K.D. Wael1, D. Bogaert, A. Adriaens: Sens. Actuators Vol. 128 (2008), p.496.

Google Scholar

[6] C. Borras, T. Laredo and B.R. Scharifker: Electrochimica Acta. Vol. 48 (2003), p.2779.

Google Scholar

[7] X. Wang, J. Hu, J. Zhang, C. Cao: Electrochimica Acta Vol. 53 (2008), p.3390.

Google Scholar

[8] P.M. Álvarez, J.F. García Araya, F.J. Beltrán, F.J. Masa and F. Medina: J. Colloid Interface Sci Vol. 283 (2005), p.504.

Google Scholar

[9] A.D. Marczewska, K. Miroslaw, A. Marczewski, D. Sternik: Adsorption Vol. 16 (2010), p.361.

Google Scholar

[10] R. Berenguer, J.P. Marco-Lozar, C. Quijada, D. Cazorla-Amorós and E. Morallón: CARBON Vol. 48 (2010), p.2737.

DOI: 10.1016/j.carbon.2010.03.071

Google Scholar

[11] S. Sun and H. Gong: Petrochem. Tech Vol. 30 (2001), p.806.

Google Scholar

[12] C. Raghuran, A.C. Paul and T.G. Bernard: Chem. Comm. 2003, 984-985.

Google Scholar

[13] R. Lapuente, F. Cases, P. Garcés, E. Morallón and J.L. Vázquez: J. Electroanal. Chem Vol. l451 (1998), p.163.

Google Scholar

[14] R. Chetty, A. Paul. Christensen, B.T. Golding and K. Scott: Appl. Catal Vol. 271 (2004), p.185.

Google Scholar

[15] N. Li and S. Sun: J. Electroanal. Chem Vol. 436 (1997), p.65.

Google Scholar

[16] S. Scirk, C. Crisafulli, R. Maggiore, S. Minicò and S. Galvagno: Appl. Surf. Sci Vol. 93 (1996), p.309.

Google Scholar

[17] S. Weng, in: Fourier-transform infrared spectroscopy analysis, edtied by Chemical Industry Publication, in press.

Google Scholar