COD Removal of Washing Water by Photodegradation

Article Preview

Abstract:

Degradation of the wastewater of washing oil tanks after degreasing and minimal treatment by photocatalysis is studied by using a rotating photoreactor and TiO2 photocatalyst of Degussa P25. Effects of irradiation time and pH value on removing efficiency are investigated. The results show that the COD down to about 80mg/L can be achieved at the irradiation time of about 4-5 hours at mild pH valus. At the pH value from 1.5 to 3.2, the COD down to about 80mg/L can be achieved at the irradiation time less than 1 hour, and the COD down to about 20mg/L could be achieved at the irradiation time of about 4 hours at a pH value of about 3.2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

415-418

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem Rev. 95(1995), p.69.

DOI: 10.1021/cr00033a004

Google Scholar

[2] M.A. Fox and M.T. Dulay, Heterogeneous photocatalysis, Chem Rev. 93(1995), p.357.

Google Scholar

[3] I.K. Konstantinou, T.M. Sakellarides, V.A. Sakkas and T.A. Albanis, Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions, Environ Sci Technol. 35(2001), p.389.

DOI: 10.1021/es001271c

Google Scholar

[4] S. Parra, J. Olivero and C. Pulgarin, Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension, Appl Catal B. 36(2002), p.75.

DOI: 10.1016/s0926-3373(01)00283-1

Google Scholar

[5] E. Vulliet, C. Emmelin, J.M. Chovelon, C. Guillard and J.M. Herrmann, Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2, Appl Catal B. 38(2002), p.127.

DOI: 10.1016/s0926-3373(02)00035-8

Google Scholar

[6] Y. Cao, L. Yi, L. Huang, Y. Liu and Y.T. Lu, Mechanism and pathways of chlorfenapyr photocatalytic degradation in aqueous suspension of TiO2, Environ Sci Technol. 40(2006), p.3373.

DOI: 10.1021/es052073u

Google Scholar

[7] R. Ali and S.H. Hassan, Degradation studies on paraquat and malathion using TiO2/ZnO based photocatalyst, Malaysian J Anal Sci. 12(2008), p.77.

Google Scholar

[8] K. Dai, T. Peng, H. Chen, R.X. Zhang and Y.X. Zhang, Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension", Environ Sci Technol. 42(2008), p.1505.

DOI: 10.1021/es702268p

Google Scholar

[9] K. Dai, T. Peng, H. Chen, J. Liu and L. Zan, Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension", Environ Sci Technol. 43(2009), p.1540.

DOI: 10.1021/es702268p

Google Scholar

[10] S.M. Gupta and M. Tripathi, A review of TiO2 nanoparticles, Chinese Science Bulletin. 56(16)(2011), p.1639.

Google Scholar

[11] GB 11914-89. Water quality-Determination of chemical oxygen demand-Dichromate method, (in Chinese).

Google Scholar

[12] GB18918-2002. Discharge Standards of Pollutants for Municipal Wasterwater Treatment Plant, (in Chinese).

Google Scholar

[13] A. Fujishima, X.T. Zhang and D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Reports, 63(2008), p.515.

DOI: 10.1016/j.surfrep.2008.10.001

Google Scholar

[14] A.V. Emeline, V.K. Ryabchuk and N. Serpone, Dogmas and misconceptions in heterogeneous photocatalysis. Some enlightened reflections, J. Phys. Chem. B 109(2005), p.18515.

DOI: 10.1021/jp0523367

Google Scholar