[1]
Eckert C.A.; Knutson B.L.; Debenedetti P.G. Supercritical fluids as solvents for chemical and materials processing. Nature.1996, 383(26), 313-318.
DOI: 10.1038/383313a0
Google Scholar
[2]
Kawashima Y. Nano-particulate systems for improved drug delivery. Advanced Drug Delivery Reviews. 2001, 47, 1-2.
DOI: 10.1016/s0169-409x(00)00117-4
Google Scholar
[3]
Kawakami K. Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Advanced Drug Delivery Reviews. 2012, 64(6), 480-495.
DOI: 10.1016/j.addr.2011.10.009
Google Scholar
[4]
Yasuji T.; Kondo H.; Sako K. The effect of food on the oral bioavailability of drugs: a review of current developments and pharmaceutical technologlies for pharmacokinetic control. Therapeutic Delivery. 2012, 3(1), 81-90.
DOI: 10.4155/tde.11.142
Google Scholar
[5]
Broadhead J.; Rouan S.K.E.; Rhodes C.T. The spray drying of pharmaceuticals. Drug Development and Industrial Pharmacy. 1992, 18, 1169-1206.
DOI: 10.3109/03639049209046327
Google Scholar
[6]
Vehring R. Pharmaceutical particle engineering via spray drying, Pharmaceutical Research.2008, 25(5), 999-1022.
DOI: 10.1007/s11095-007-9475-1
Google Scholar
[7]
Illig, K.J.; Mueller, R.L.; Orstrander, K.D.; Swanson, J.R. Use of microfluidizer processing for preparation of pharmaceutical suspensions. Pharmaceutical Technology. 1996, 20, 78-88.
Google Scholar
[8]
Rubinstein, M.H.; Gould, P.; Particle size reduction in the ball mill. Drug Development and Industrial Pharmacy. 1987, 13, 81-92.
DOI: 10.3109/03639048709040157
Google Scholar
[9]
Jung, J.; Perrut, M.; Paticle design using supercritical fluids: Literature and Patent survey. Journal of Supercritical Fluids. 2001,20, 179-219.
DOI: 10.1016/s0896-8446(01)00064-x
Google Scholar
[10]
Fages, J.; Lochard, H.; Letourneau, J.J.; Sauceau, M.; Rodier, E. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technology. 2004, 141, 219-226.
DOI: 10.1016/j.powtec.2004.02.007
Google Scholar
[11]
Pasquali, I.; Bettini, R.; Giordano, F. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur. J. Pharm. Sci. 2006, 27, 299-310.
DOI: 10.1016/j.ejps.2005.11.007
Google Scholar
[12]
Helfgen, B.; Türk, M.; Schaber, K. Theoretical and experimental investigations of the micronization of organic solids by rapid expansion of supercritical solutions. Power Technology. 2000, 110, 22-28.
DOI: 10.1016/s0032-5910(99)00264-8
Google Scholar
[13]
Hu, G.Q.; Chen, H.Y.; Cai, J.G.; Deng, X. Micronization of Griseofulvin by RESS in supercritical CO2 with co-solvent Acetone. Chinese J. Chem. Eng. 2003, 11(4), 403-407.
Google Scholar
[14]
Kayrak, D.; Akman, U.; Hortaçsu, Ö. Micronization of ibuprofen by RESS. J. Supercrit. Fluids. 2003, 26, 17-31.
DOI: 10.1016/s0896-8446(02)00248-6
Google Scholar
[15]
Huang, Z.; Sun, G.B.; Chiew, Y.C.; Kawi, S. Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS). Powder Technology. 2005, 160, 127-134.
DOI: 10.1016/j.powtec.2005.08.024
Google Scholar
[16]
Fages, J.; Lochard, H. ; Letourneau, J.J.; Sauceau, M.; Rodier, E. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technology. 2004, 141, 219-226.
DOI: 10.1016/j.powtec.2004.02.007
Google Scholar
[17]
Chiou, A.H.J.; Yeh, M.K.; Chen, C.Y.; Wang, D.P. Micronization of meloxicam using a supercritical fluids process. J. Supercrit. Fluids. 2007, 42, 120-128.
DOI: 10.1016/j.supflu.2006.12.024
Google Scholar
[18]
Phillips, E.M.; Stella, V.J. Rapid expansion from supercritical solutions:application to pharmaceutical processes. Int. J. Pharm. 1993, 94, 1-10.
Google Scholar
[19]
Lele, A.K.; Shine, A.D. Morphology of polymers precipitated from a supercritical solvent. AIChE J. 1992, 38, 742-752.
DOI: 10.1002/aic.690380511
Google Scholar
[20]
Garnier, S.; Neau, E.; Alessi, P.; Cortesi, A.; Kikic, I. Modeling Solubility of Solids in Supercritical Fluids using Fusion Properties. Fluid Phase Equilibria. 1999, 158, 491–500.
DOI: 10.1016/s0378-3812(99)00151-x
Google Scholar
[21]
Cheng, K.W.; Tang, M.; Chen, Y.P. Solubilities of benzoin, propyl 4-hydroxybenzoate and mandelic acid in supercritical carbon dioxide. Fluid Phase Equilibria. 2002, 201, 79-96.
DOI: 10.1016/s0378-3812(02)00070-5
Google Scholar
[22]
Chrastil, J. Solubility of Solids and Liquids in Supercritical Gases. J. Phys. Chem. 1982, 86, 3016-3021.
DOI: 10.1021/j100212a041
Google Scholar
[23]
Mendez-Santiago, J.; Teja, A. S. The Solubility of Solids in Supercritical Fluids. Fluid Phase Equilibria. 1999, 158, 501-510.
DOI: 10.1016/s0378-3812(99)00154-5
Google Scholar
[24]
Lucas, A.; Gracia, I.; Rincon, J.; Garcia, M. T. Solubility determination and model prediction of olive husk oil in supercritical carbon dioxide and cosolvents. Ind. Eng. Chem. Res. 2007, 46, 061-5066.
DOI: 10.1021/ie061153j
Google Scholar
[25]
Song, Q.; Zhu, J.; Wan, J.; Cao, X. Measurement and modeling of epigallocatechin gallate solubility in supercritical carbon dioxide fluid with ethanol cosolvent. J. Chem. Eng. Data. 2010, 55, 3946-3951.
DOI: 10.1021/je901025f
Google Scholar
[26]
Sauceau, M.; Fages, J.; Letourneau, J. J.; et al. A novel apparatus for accurate measurements of solid solubilities in supercritical phases. Ind. Eng. Chem. Res. 2000, 39 (12), 4609-4614.
DOI: 10.1021/ie000181d
Google Scholar
[27]
Peng, D. Y.; Robinson, D. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59-64.
Google Scholar
[28]
Debeneditti, P.G., Homogeneous nucleation in supercritical fluid, AICHE. J., 1990, 36(9), 1289-1295.
Google Scholar
[29]
Ricardo, S. H.; Ruiz-Trevino, F. A.; Estrada, C. H. O. Chitin Microstructure Formation by Rapid Expansion Techniques with Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2009, 48, 769-778.
DOI: 10.1021/ie800084x
Google Scholar
[30]
Reverchon E.; Donsi G.; Gorgoglione D. Salicylic acid solubilization in supercritical CO2 and its micronization by RESS, Journal of Supercritical Fluids. 1993, 6, 241-248.
DOI: 10.1016/0896-8446(93)90034-u
Google Scholar