Determination on Solubility and RESS of Risocaine

Article Preview

Abstract:

To prepare ultra-fine particles and offer correlative applications such as the micronization of drugs with rapid expansion of supercritical solution (RESS), the first work in measuring the solubility of risocaine has been carried out at different operation conditions in this paper. The trend of solubility due to changes in specific operational parameters has been examined. The results of pressure (9-30 MPa) and temperature (308-328K) effecting on solubility show that the solubility increases mainly along with the increasing density. With applying different models to correlate the solubility data, we found Chrastil models had better correlation effects than the Peng Robinson EOS model, Mendez-Santiago and Teja equation model, with providing a nearly perfect average absolute relative deviation (AARD) of 0.0596. In the second part of work, RESS was applied to prepare risocaine particles at five different process conditions, including extraction temperature (308-328K), extraction pressure (9-30MPa), nozzle temperature (100-120°C), nozzle diameter (0.1-0.4nm) and spray distance (2-4cm).The size and morphology were determined by scanning electron microscopy (SEM). On the basis of the different experimental operation conditions, granular, filmily and threadlike particles with diameter (1-100nm) were obtained, it was also demonstrated that a successful size reduction of risocaine particles.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

1014-1025

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Eckert C.A.; Knutson B.L.; Debenedetti P.G. Supercritical fluids as solvents for chemical and materials processing. Nature.1996, 383(26), 313-318.

DOI: 10.1038/383313a0

Google Scholar

[2] Kawashima Y. Nano-particulate systems for improved drug delivery. Advanced Drug Delivery Reviews. 2001, 47, 1-2.

DOI: 10.1016/s0169-409x(00)00117-4

Google Scholar

[3] Kawakami K. Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Advanced Drug Delivery Reviews. 2012, 64(6), 480-495.

DOI: 10.1016/j.addr.2011.10.009

Google Scholar

[4] Yasuji T.; Kondo H.; Sako K. The effect of food on the oral bioavailability of drugs: a review of current developments and pharmaceutical technologlies for pharmacokinetic control. Therapeutic Delivery. 2012, 3(1), 81-90.

DOI: 10.4155/tde.11.142

Google Scholar

[5] Broadhead J.; Rouan S.K.E.; Rhodes C.T. The spray drying of pharmaceuticals. Drug Development and Industrial Pharmacy. 1992, 18, 1169-1206.

DOI: 10.3109/03639049209046327

Google Scholar

[6] Vehring R. Pharmaceutical particle engineering via spray drying, Pharmaceutical Research.2008, 25(5), 999-1022.

DOI: 10.1007/s11095-007-9475-1

Google Scholar

[7] Illig, K.J.; Mueller, R.L.; Orstrander, K.D.; Swanson, J.R. Use of microfluidizer processing for preparation of pharmaceutical suspensions. Pharmaceutical Technology. 1996, 20, 78-88.

Google Scholar

[8] Rubinstein, M.H.; Gould, P.; Particle size reduction in the ball mill. Drug Development and Industrial Pharmacy. 1987, 13, 81-92.

DOI: 10.3109/03639048709040157

Google Scholar

[9] Jung, J.; Perrut, M.; Paticle design using supercritical fluids: Literature and Patent survey. Journal of Supercritical Fluids. 2001,20, 179-219.

DOI: 10.1016/s0896-8446(01)00064-x

Google Scholar

[10] Fages, J.; Lochard, H.; Letourneau, J.J.; Sauceau, M.; Rodier, E. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technology. 2004, 141, 219-226.

DOI: 10.1016/j.powtec.2004.02.007

Google Scholar

[11] Pasquali, I.; Bettini, R.; Giordano, F. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur. J. Pharm. Sci. 2006, 27, 299-310.

DOI: 10.1016/j.ejps.2005.11.007

Google Scholar

[12] Helfgen, B.; Türk, M.; Schaber, K. Theoretical and experimental investigations of the micronization of organic solids by rapid expansion of supercritical solutions. Power Technology. 2000, 110, 22-28.

DOI: 10.1016/s0032-5910(99)00264-8

Google Scholar

[13] Hu, G.Q.; Chen, H.Y.; Cai, J.G.; Deng, X. Micronization of Griseofulvin by RESS in supercritical CO2 with co-solvent Acetone. Chinese J. Chem. Eng. 2003, 11(4), 403-407.

Google Scholar

[14] Kayrak, D.; Akman, U.; Hortaçsu, Ö. Micronization of ibuprofen by RESS. J. Supercrit. Fluids. 2003, 26, 17-31.

DOI: 10.1016/s0896-8446(02)00248-6

Google Scholar

[15] Huang, Z.; Sun, G.B.; Chiew, Y.C.; Kawi, S. Formation of ultrafine aspirin particles through rapid expansion of supercritical solutions (RESS). Powder Technology. 2005, 160, 127-134.

DOI: 10.1016/j.powtec.2005.08.024

Google Scholar

[16] Fages, J.; Lochard, H. ; Letourneau, J.J.; Sauceau, M.; Rodier, E. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technology. 2004, 141, 219-226.

DOI: 10.1016/j.powtec.2004.02.007

Google Scholar

[17] Chiou, A.H.J.; Yeh, M.K.; Chen, C.Y.; Wang, D.P. Micronization of meloxicam using a supercritical fluids process. J. Supercrit. Fluids. 2007, 42, 120-128.

DOI: 10.1016/j.supflu.2006.12.024

Google Scholar

[18] Phillips, E.M.; Stella, V.J. Rapid expansion from supercritical solutions:application to pharmaceutical processes. Int. J. Pharm. 1993, 94, 1-10.

Google Scholar

[19] Lele, A.K.; Shine, A.D. Morphology of polymers precipitated from a supercritical solvent. AIChE J. 1992, 38, 742-752.

DOI: 10.1002/aic.690380511

Google Scholar

[20] Garnier, S.; Neau, E.; Alessi, P.; Cortesi, A.; Kikic, I. Modeling Solubility of Solids in Supercritical Fluids using Fusion Properties. Fluid Phase Equilibria. 1999, 158, 491–500.

DOI: 10.1016/s0378-3812(99)00151-x

Google Scholar

[21] Cheng, K.W.; Tang, M.; Chen, Y.P. Solubilities of benzoin, propyl 4-hydroxybenzoate and mandelic acid in supercritical carbon dioxide. Fluid Phase Equilibria. 2002, 201, 79-96.

DOI: 10.1016/s0378-3812(02)00070-5

Google Scholar

[22] Chrastil, J. Solubility of Solids and Liquids in Supercritical Gases. J. Phys. Chem. 1982, 86, 3016-3021.

DOI: 10.1021/j100212a041

Google Scholar

[23] Mendez-Santiago, J.; Teja, A. S. The Solubility of Solids in Supercritical Fluids. Fluid Phase Equilibria. 1999, 158, 501-510.

DOI: 10.1016/s0378-3812(99)00154-5

Google Scholar

[24] Lucas, A.; Gracia, I.; Rincon, J.; Garcia, M. T. Solubility determination and model prediction of olive husk oil in supercritical carbon dioxide and cosolvents. Ind. Eng. Chem. Res. 2007, 46, 061-5066.

DOI: 10.1021/ie061153j

Google Scholar

[25] Song, Q.; Zhu, J.; Wan, J.; Cao, X. Measurement and modeling of epigallocatechin gallate solubility in supercritical carbon dioxide fluid with ethanol cosolvent. J. Chem. Eng. Data. 2010, 55, 3946-3951.

DOI: 10.1021/je901025f

Google Scholar

[26] Sauceau, M.; Fages, J.; Letourneau, J. J.; et al. A novel apparatus for accurate measurements of solid solubilities in supercritical phases. Ind. Eng. Chem. Res. 2000, 39 (12), 4609-4614.

DOI: 10.1021/ie000181d

Google Scholar

[27] Peng, D. Y.; Robinson, D. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59-64.

Google Scholar

[28] Debeneditti, P.G., Homogeneous nucleation in supercritical fluid, AICHE. J., 1990, 36(9), 1289-1295.

Google Scholar

[29] Ricardo, S. H.; Ruiz-Trevino, F. A.; Estrada, C. H. O. Chitin Microstructure Formation by Rapid Expansion Techniques with Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2009, 48, 769-778.

DOI: 10.1021/ie800084x

Google Scholar

[30] Reverchon E.; Donsi G.; Gorgoglione D. Salicylic acid solubilization in supercritical CO2 and its micronization by RESS, Journal of Supercritical Fluids. 1993, 6, 241-248.

DOI: 10.1016/0896-8446(93)90034-u

Google Scholar