Extraction of Silk Protein from Middle Silk Gland of B.mori for Preparation of 3-D Scaffold

Article Preview

Abstract:

In this paper, 3-D scaffolds were prepared using native protein solution extracted from middle silk gland of B.mori silkworm (SS). The distribution of pore in 3-D scaffold was homogeneous, and the pore size decreased with increase in the concentration of SS. By changing the concentration from 1.7%, 3.5% to 7%, the porosity rate of scaffolds was 95%, 94% and 91%, respectively. The water absorbency apparently decreases and the water retention rate increases with increase in the concentration of SS. The scaffolds prepared from SS with concentration of 3.5% and 7% have higher strength, on the contrary, the scaffolds prepared from SS with low concentration 1.7% shows higher elasticity. FTIR spectra indicated that SS mainly adopted β-sheet conformation. This paper proposed one green way to extract silk protein from the silk gland of B.mori silkworm and prepare its corresponding scaffolds. It seems meaning to provide implication to develop silk-based biomaterials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

1729-1736

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.L. Boskey: Mineralization, structure, and function of bone. In: Seibel M, Robins S, Bilezikian J, editors. Dynamics of bone and cartilage metabolism. Academic press: San Diego, CA; 1999. p.153–64.

DOI: 10.1359/jbmr.2000.15.10.2058

Google Scholar

[2] H.J. Kim, U.J. Kim, H.S. Kim, C. Li, M. Wada, G.G. Leisk, D.L. Kaplan: Bone tissue engineering with premineralized silk scaffolds. Bone. vol. 42 (2008),pp.1226-34.

DOI: 10.1016/j.bone.2008.02.007

Google Scholar

[3] R. Langer, J. Vacanti: Tissue engineering. Science.vol. 260-5110(1993),p.260:920.

DOI: 10.1126/science.8493529

Google Scholar

[4] J.A. Habiballah, and A. Bamousa: Allograftic and alloplastic auricular reconstruc-tion. Saudi Med. J.vol. 21(2000), p.1173 –1177.

Google Scholar

[5] J. Goshima, V.M. Goldberg, A.I. Caplan: Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials. vol.12-2(1991),pp.253-258.

DOI: 10.1016/0142-9612(91)90209-s

Google Scholar

[6] S.S. Silva, J.F. Mano, R.L. Reis: Potential applications of natural origin polymer-based systems in soft tissue regeneration. Crit. Rev. Biotechnol. vol. 30(2010), p.200–221.

DOI: 10.3109/07388551.2010.505561

Google Scholar

[7] J. Venkatesan, S.K. Kim: Chitosan composites for bone tissue engineering-An overview. Mar. Drugs, vol. 8(2010), p.2252–2266.

DOI: 10.3390/md8082252

Google Scholar

[8] B. Yang, Z.H. Yin, J.L. Cao, Z.L. Shi, Z.T. Zhang, H.X. Song, F.Q. Liu, B. Caterson: In vitro cartilage tissue engineering using cancellous bone matrix gelatin as a biodegradable scaffold. Biomed. Mater, vol. 5-4(2010).

DOI: 10.1088/1748-6041/5/4/045003

Google Scholar

[9] M. S. Taylor, A.U. Daniels, K. P. Andriano and J. Heller: 6 bioabsorbable polymers — in-vitro acute toxicity of accumulated degradation products. J. Appl.Biomater. vol. 5(1994), pp.151-157.

DOI: 10.1002/jab.770050208

Google Scholar

[10] H. Teramoto, T. Kameda, Y. Tamada: Preparation of Gel film from Bombyx mori silk sericin and its characterization as a wound dressing. Biosci. Biotechnol. Biochem. vol. 72(2008), p.3189–3196.

DOI: 10.1271/bbb.80375

Google Scholar

[11] H. David, M. Vikas, D. Ramesh, H. Mohamed, C. Joseph, G. Hamidreza: Influence of polymer structure and biodegradation on DNA release from silk–elastinlike protein polymer hydrogels. Int. J. Pharm. Vol. 368(2009), pp.215-219.

DOI: 10.1016/j.ijpharm.2008.10.021

Google Scholar

[12] B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee and W.H Park: Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. vol. 25(2004 ), pp.1289-1297.

DOI: 10.1016/j.biomaterials.2003.08.045

Google Scholar

[13] Y. Tamada: New process to form a silk fibroin porous 3-D structure. Biomacro-molecules. vol. 6(20 05), pp.3100-3106.

Google Scholar

[14] R. Nazarov, H.J. Jin and D.L. Kaplan: Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules. vol. 5(2004), p.718– 726.

DOI: 10.1021/bm034327e

Google Scholar

[15] P. Aramwit, S. Kanokpanont, T. Nakpheng, T. Srichana: The effect of sericin from various extraction methods on cell viability and collagen production. Int. J. Mol. Sci. vol. 11(2010), p.2200–2211.

DOI: 10.3390/ijms11052200

Google Scholar

[16] R. Fedic, M.Z ÿ urovec, F. Sehnal: J. Insect Biotechnol. Sericol. Vol. 71(2002) ,pp.1-15.

Google Scholar

[17] S.C: Preparation of self-assembled silk sericin nanoparticles. Int. J. Biol. Macromol. vol. 32(2003), p.36–42.

Google Scholar

[18] R. Dash, M. Mandal, S.K. Ghosh, S.C. Kundu: Silk sericin of tropical tasar silkworm inhibits UVB induced apoptosis in human skin keratinocytes. Mol.Cell. Biochem. Vol. 311(2008), p.111–119.

DOI: 10.1007/s11010-008-9702-z

Google Scholar

[19] S.C. Kundu, B.C. Dash, R. Dash, D.L. Kaplan: Natural protective glue protein,sericin bioengineered by silkworms: potential for biomedical and biotechnolog-ical applications. Prog. Polym. Sci. vol. 33-10 (2008),p.998–1012.

DOI: 10.1016/j.progpolymsci.2008.08.002

Google Scholar

[20] L.G. Marcelino, L. Liu, X. Feng: Sericin/PVA blend membranes for pervapora-tion separation of ethanol/water mixtures. J. Membr. Sci.vol. 295(2007), p.71–79.

Google Scholar

[21] B.B. Mandal, S.C. Kundu: Cell proliferation and migration in silk fibroin 3D scaffolds. Biomaterials. Vol. 30(2009), pp.2956-65.

DOI: 10.1016/j.biomaterials.2009.02.006

Google Scholar

[22] Y. Wang, U.J. Kim, D.J. Blasioli, H.J. Kim, D.L. Kaplan: In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials vol. 26(2005), pp.7082-94.

DOI: 10.1016/j.biomaterials.2005.05.022

Google Scholar