Ultrasonic Assisted Multistage Countercurrent Extraction of Ginsenosides from Panax quiquefolium L.

Article Preview

Abstract:

Ultrasonic assisted multistage countercurrent extraction technique of ginsenosides Rb1, Rb2, Rc, Rd, Re, Rg1, and Rg2 from Panax quiquefolium L. was developed in this paper. It provides the analytic technique to determine simultaneously the seven major ginsenosides. The effects of ethanol concentration, ratio of liquid to solid, extraction temperature and extraction time on the extraction yields of the seven ginsenosides and total ginsenosides from Panax quiquefolium L.were investigated. The optimal process condition of ultrasonic assisted four-stage countercurrent extraction (4-UAMSCCE) was found using orthogonal array experimental design technique: 70% (v/v) ethanol solution, liquid: solid ratio of 10 ml/g, extraction temperature 45°C and extraction time 30 min. Under optimum process condition, the extraction efficiency of 4-UAMSCCE had been compared with those of conventional techniques including heat distillation extraction (HDE), ultrasonic assisted extraction (UAE), four-stage countercurrent extraction (4-MSCCE). Results show that the 4-UAMSCCE offers the highest ginsenosides extraction rate and considerable savings in time, energy and solvent consumption.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

1852-1861

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. Darzynkiewicz, F. Traganos, J.M. Wu, S. Chen. Chinese herbal mixture PC-SPES in treatment of prostate cancer. A review. Int. J. Oncol. 17(2000)729-736.

DOI: 10.3892/ijo.17.4.729

Google Scholar

[2] T.K. Yun, S.Y. Choi, Preventive effect of ginseng intake against various human cancers: a case-control study on 1987 pairs. Cancer Epidemiol Biomarkers Prev 4 (1995) 401-408.

Google Scholar

[3] V Vukasan, J.L. Sievenpiper, V.Y. Koo, T. Francis, U. Beljan-Zdravkovic, Z. Xu, E. Vidgen. American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch. Intern. Med. 160 (2000)1009-1013.

DOI: 10.1001/archinte.160.7.1009

Google Scholar

[4] G. Ren, F. Chen. Simultaneous quantification of ginsenosides in American ginseng (Panax quinquefolium) root powder by visible/near-infrared reflectance spectroscopy J. Agric. Food Chem., 47 (1999)2771–2775.

DOI: 10.1021/jf9812477

Google Scholar

[5] W.A. Court, J.G. Hendel, J. Elmi. Reversed-phase high-performance liquid chromatography determination of ginsenosides of Panax quinquefolium. J. Chromatogr. A 755 (1996) 11-17.

DOI: 10.1016/s0021-9673(96)00580-8

Google Scholar

[6] S.R. Ko, K.J. Choi, S.C. Kim, H. Kang-Wan. Content and composition of saponin compounds of Panax species. Korean J. Ginseng Sci. 19(1995) 254-259

Google Scholar

[7] W.C. Chuang, H.K. Wu, S.J. Sheu,, S.H. Chiou, H.C. Chang, Y.P.A. Chen. A comparative study on commercial samples of Ginseng Radix. Planta Med. 61(1995)459-465.

DOI: 10.1055/s-2006-958137

Google Scholar

[8] L. Murphy. Effects of American ginseng on breast cancer and prostate cancer cells. American ginseng production in the 21st century, Conference proceedings, Cornell Cooperative Extension of Green County (2000) 39.

Google Scholar

[9] A.S. Attele, Y.P. Zhou, J.T. Xie, J.A. Wu, L. Zhang, L. Dey, W. Pugh, P.A. Rue, K.S. Polonsky, C.S. Yuan. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 51 (2002) 1851-1858.

DOI: 10.2337/diabetes.51.6.1851

Google Scholar

[10] S.J. Kim, H.N. Murthy, E.J. Hahn, H.L. Lee, K.Y. Paek. Parameters affecting the extraction of ginsenosides from the adventitious roots of ginseng (Panax ginseng C.A. Meyer). Sep. Puri. Tech., 56 (2007) 401-406.

DOI: 10.1016/j.seppur.2007.06.014

Google Scholar

[11] J.Wu, L. Lin, F. Chau. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason. Sonochem. 8 (2001) 347-352.

DOI: 10.1016/s1350-4177(01)00066-9

Google Scholar

[12] M. Vinatoru. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 8 (2001) 303-313.

DOI: 10.1016/s1350-4177(01)00071-2

Google Scholar

[13] J. Kwon, J.M.R. Bélanger, J.R.J. Paré, V.A. Yaylayan. Application of the microwave-assisted process (MAPTM) to the fast extraction of ginseng saponins. Food Research International 36 (2003) 491-498.

DOI: 10.1016/s0963-9969(02)00197-7

Google Scholar

[14] Q. Wang, S. Ma, B. Fu, F.S.C. Lee, X. Wang. Development of multi-stage countercurrent extraction technology for the extraction of glycyrrhizic acid (GA) from licorice (Glycyrrhiza uralensis Fisch). Biochem. Eng. J. 21 (2004) 285-292.

DOI: 10.1016/j.bej.2004.06.002

Google Scholar

[15] W. Li, C. Zheng, Z.X. Ning. Extraction of dihydromyricetin by MDMCE. J. Chem. Ind. Eng. (China) 57(2006) 376-379.

Google Scholar

[16] Zalacain, M. Prodanov, M. Carmona, G.L. Alonso. Optimization of extraction and identification of gallotannins from sumac leaves. Biosyst. Eng. 84 (2003) 211-216.

DOI: 10.1016/s1537-5110(02)00246-5

Google Scholar

[17] L.C. Dickey, N. Parris, J.C. Craig, M.J. Kurantz. Serial batch extraction of zein from milled maize. Ind. Crops Products 15(2002) 33-42.

DOI: 10.1016/s0926-6690(01)00093-0

Google Scholar

[18] Moure, D. Franco, J. Sineiro, H. Domínguez, M.J. Nunez. Simulation of multistage extraction of antioxidants from Chilean hazelnut (Gevuina avellana) hulls. J. Am. Oil Chem. Soc.80 (2003) 389-396.

DOI: 10.1007/s11746-003-0709-x

Google Scholar