[1]
B.K. Nandia, A. Goswamia and M.K Purkait. Removal of cationic dyes from aqueous solutions by kaolin: Kinetic and equilibrium studies. Appl Clay Sci. 42 (2009) 583–590.
DOI: 10.1016/j.clay.2008.03.015
Google Scholar
[2]
I.D. Mall, V.C. Srivastava, N.K. Agarwal, I.M. Mishra, Chemosphere 61 (2005) 492–501.
Google Scholar
[3]
P. Janos, H. Buchtova, M. Ryznarova, Sorption of dyes from aqueous solutions onto fly ash, Water Res. 37 (2003) 4938–4944.
DOI: 10.1016/j.watres.2003.08.011
Google Scholar
[4]
M.A. Brown, S.C. DeVito, Predicting azo dye toxicity.Crit. Rev. Environ. Sci. Technol 23. (1993) 249-324.
Google Scholar
[5]
A. Ozcan, AS. Ozcan. Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite. J. Hazard Materi.125 (2005) 252-259.
DOI: 10.1016/j.jhazmat.2005.05.039
Google Scholar
[6]
TK. Hyun, P. Chulhwan, BS Eung, K Sangyong. Decolorization of disperse and reactive dye solutions using ferric chloride. Desalination. 161(2004) 49-58.
DOI: 10.1016/s0011-9164(04)90039-2
Google Scholar
[7]
N. Daneshvar, A. Aleboyeh, A .R Khataee. The evaluation of electrical energy per order for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere. 59 (2005) 761-767.
DOI: 10.1016/j.chemosphere.2004.11.012
Google Scholar
[8]
J. Bell, CA. Buckley. Treatment of a textile dye in the anaerobic baffled reactor. Water SA. 29 (2003) 129-134.
DOI: 10.4314/wsa.v29i2.4847
Google Scholar
[9]
C.T. Kresge, M.E. Leonowicz, W.J. Roth et al., Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism, Nature 359 (1992) 710-712.
DOI: 10.1038/359710a0
Google Scholar
[10]
A Stein.Advances in microporous and mesoporous solids highlights of recent progress. Adv. Mater. 15(2003)763-775.
DOI: 10.1002/adma.200300007
Google Scholar
[11]
C. Lee, S. Liu, L. Juang et al., Application of MCM-41 for dyes removal from wastewater. J. Hazard. Mater. 147 (2007) 997-1005.
Google Scholar
[12]
J.B. Joo, J. Park, J. Yi. Preparation of polyelectrolyte-functionalized mesoporous silicas for the selective adsorption of anionic dye in an aqueous solution. J. Hazard. Mater. (2008).
DOI: 10.1016/j.jhazmat.2009.02.015
Google Scholar
[13]
Ch Liang, Cs Liu, Fb Li, F Wu. The effect of Praseodymium on the adsorption and photocatalytic degradation of azo dye in aqueous Pr3+-TiO2 suspension. Chem. Eng. J. 147 (2009) 219–225.
DOI: 10.1016/j.cej.2008.07.004
Google Scholar
[14]
L. Abramian, H. El-Rassy, Adsorption kinetics and thermodynamics of azo-dye Orange II onto highly porous titania aerogel, Chem. Eng. J. (2009).
DOI: 10.1016/j.cej.2009.01.019
Google Scholar
[15]
B. Damardji, et al., Preparation of TiO2-pillared montmorillonite as photocatalyst Part I. Microwave calcination characterisation, and adsorption of a textile azo dye, Appl Clay Sci(2009).
DOI: 10.1016/j.clay.2008.12.010
Google Scholar
[16]
M.P. Elizalde-Gonz alez, V. Hern andez-Montoya, Removal of acid orange 7 by guava seed carbon: a four parameter optimization study, J. Hazard Mater (2008).
DOI: 10.1016/j.jhazmat.2009.02.064
Google Scholar
[17]
H.Yang, R. Xu, Xm. Xue et al., Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal. J. Hazard Mater. 152 (2008) 690-698.
DOI: 10.1016/j.jhazmat.2007.07.060
Google Scholar
[18]
M. Alkan, M. Dogan, Y. Turhan, O. Demirbas , P. Turan. Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions. Chem. Eng. J. 139 (2008) 213–223.
DOI: 10.1016/j.cej.2007.07.080
Google Scholar
[19]
V. K. Gupta, I. Ali, D. Mohan. Equilibrium uptake and sorption dynamicsfor the removal of a basic dye (basic red) using low cost adsorbents. J.Colloid Interf Sci. 265 (2003) 257–264.
DOI: 10.1016/s0021-9797(03)00467-3
Google Scholar