Promoting Effect of Cobalt Addition on Higher Alcohols Synthesis over Copper-Based Catalysts

Article Preview

Abstract:

The textural properties and microstructures of Co-modified Cu-based catalysts were investigated by N2 physisorption, X-ray diffraction (XRD), temperature-programmed reduction/desorption of hydrogen (H2-TPR/TPD) and scanning electron microscopy (SEM). Higher alcohols synthesis (HAS) was performed in a fixed bed reactor. The characterization results indicated that incorporation of cobalt in the Cu/γ-Al2O3 catalyst promoted the formation of CuCo2O4 crystallites, causing the decrease in BET surface area and pore volume. The gradual increase of CuCo2O4 concentration enhanced the adsorption of hydrogen on the surface layers, facilitating the formation of the well dispersed bimetal Cu-Co sites. In the HAS reaction, the catalytic activity of CO hydrogenation and space time yield of total alcohols presented an increasing trend with the increase in Co concentration. As the ratio of Co/Cu increased to 1, the catalyst produced the space time yield of 0.38 g.ml-1.h-1 and the selectivity of 65% for total alcohols, respectively. Moreover, higher Co concentration facilitated the product distribution shifting towards C2+OH.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

270-275

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Johnston, G.J. Hutchings, N.J. Coville, K.P. Finch, J.R. Moss. Appl Catal A. Vol. 186 (1999), p.245

Google Scholar

[2] J.M. Camposmartin, A. Guerreroruiz, J.L.G. Fierro. J Catal. Vol. 156 (1995), p.208

Google Scholar

[3] D.H. Mei, R. Rousseau, S.M. Kathmann, V.A. Glezakou, M.H. Engelhard, W.L. Jiang, C.M. Wang, M.A. Gerber, J.F. White, D.J. Stevens. J Catal. Vol. 271 (2010), p.325

Google Scholar

[4] H. Xiao, D. Li, W. Li, Y. Sun. Fuel Process Technol. Vol. 91 (2010), p.383

Google Scholar

[5] J.E. Baker, R. Burch, S.J. Hibble, P.K. Loader. Appl Catal A. Vol. 65 (1990), p.281

Google Scholar

[6] P. Courty, D. Durand, E. Freund, A. Sugier. J Mol Catal. Vol. 17 (1982), p.241

Google Scholar

[7] R. Xu, C. Yang, W. Wei, W. Li, Y. Sun, T. Hu. J Mol Catal A. Vol. 221 (2004), p.51

Google Scholar

[8] J.E. Baker, R. Burch, N. Yuqin. Appl Catal. Vol. 73 (1991), p.135

Google Scholar

[9] G. Sheffer, R.A. Jacobson, T.S. King. J Catal. Vol. 116 (1989), p.95

Google Scholar

[10] Y.Z. Fang, Y. Liu, L.H. Zhang. Appl Catal A. Vol. 397 (2011), p.183

Google Scholar

[11] X. Dong, X. Liang, H. Li, G. Lin, P. Zhang, H. Zhang. Catal Today. Vol. 147 (2009), p.158

Google Scholar

[12] A.D. de Aquino, A.J.G Cobo. Catal Today. Vol. 65 (2001), p.209

Google Scholar

[13] L. Bedel, A.C. Roger, C. Estournes, A. Kiennemann. Catal Today. Vol. 85 (2003), p.207

Google Scholar

[14] H.B. Zhang, G.D. Lin, Z.H. Zhou, X. Dong, T. Chen. Carbon. Vol. 40 (2002), p.2429

Google Scholar

[15] N. Tien-Thao, H. Alamdari, M.H. Zahedi-Niaki, S. Kaliaguine. Appl Catal A. Vol. 311(2006), p.204

DOI: 10.1016/j.apcata.2006.06.029

Google Scholar

[16] X. Gao, X. Dong, G. Lin, H. Zhang. Journal of Xiamen University (Natural Science). Vol. 46(2007), p.797

Google Scholar

[17] N.D. Subramanian, G. Balaji, S.S.R.K. Challa, J.J. Spivey. Catal Today. Vol. 147 (2009), p.100

Google Scholar

[18] K. Fang, D. Li, M. Lin, M. Xiang, W. Wei and Y. Sun. Catalysis Today. Vol. 147 (2009), p.133

Google Scholar