First-Principles Investigations on Electronic, Elastic and Thermodynamic Properties of VN under High Pressure

Article Preview

Abstract:

An investigation on electronic, elastic and thermodynamic properties of VN under high pressure has been conducted using first-principles calculations based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. At elevated pressures VN is predicted to undergo a structural phase transition from the relatively open NaCl-type structure into the denser CsCl-type atomic arrangement. The predicted transition pressure is 189 GPa. The elastic constants, Debye temperature as a function of pressure and temperature of VN are presented.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

2805-2809

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kwon, S. Choi and L.T. Thompson; J. Catal. 184 (1999) 236.

Google Scholar

[2] W. A. Harrison and G.K. Straub: Phys. Rev. B 36 (1987) 2695.

Google Scholar

[3] S. Jhi, J. Ihm, S.G. Louie and M.L. Cohen: Nature 399 (1999) 132.

Google Scholar

[4] C. Stampfl, W. Mannstadt, R. Asahi, A.J. Freeman, Phys. Rev. B 63 (2001) 15506.

Google Scholar

[5] X. Chen, V.V. Struzhkin, Z.G. Wu, M. Somayazulu, J. Qian, S. Kung, A.N. Christensen, Y. Zhao, R.E. Cohen, H. Mao and R.J. Hemley: PNAS 102 (2005) 3198.

DOI: 10.1073/pnas.0500174102

Google Scholar

[6] P. Lazar, J. Redinger and R. Podloucky: Phys. Rev. B 76 (2007) 174112.

Google Scholar

[7] E.I. Isaev, S.I. Simak, A. Abrikosov, R. Ahuja, Yu. Kh., M.I. Vakilov, A.I. Katsnelson, Lichtenstein and B. Johansson: J. Appl. Phys. 101 (2007) 123519.

Google Scholar

[8] C. Ravi: CALPHAD 33 (2009) 469.

Google Scholar

[9] X. Zhou, H. Chen, D. Shu, C. He and J. Nan: J. Chem. Phys. Solids 70 (2009) 495.

Google Scholar

[10] M. Sahnoun, J.C. Parlebas, M. Driz and C. Daul: Physica B 405 (2010) 3822.

DOI: 10.1016/j.physb.2010.06.009

Google Scholar

[11] M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark and M.C. Payne: J. Phys.: Condens. Matter 14 (2002) 2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[12] J.P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865.

Google Scholar

[13] G.P. Francis and M.C. Payne: J. Phys.: Condens. Matter 2 (1990) 4395.

Google Scholar

[14] A.M. Hao, T.J Zhou, Y. Zhu, X.Y. Zhang and R.P. Liu: Mater Chem. Phys. 129 (2011) 99.

Google Scholar

[15] F. Birch: J. Geophys. Res. 83 (1978) 1257.

Google Scholar

[16] P. Villars and L.D. Calvet: Pearson's Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985).

Google Scholar

[17] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, N. Shinn and S.A. Barnett: J. Appl. Phys. 72 (1992) 1805.

Google Scholar

[18] Y. Xie, A.R. Oganov and Y. Ma: Phys. Rev. Lett. 104 (2010) 177005.

Google Scholar

[19] G. Gökoğlu: J. Phys. Chem. Solids 69 (2008) 2924.

Google Scholar

[20] A. Hao, X. Yang, X. Wang, R. Yu, X. Liu, W. Xin and R. Liu: Comput. Mater. Sci. 48 (2010) 59.

Google Scholar