Calculation of Thermodynamic and Thermoelastic Properties for Ductile B2-YAg Intermetallics with Molecular Dynamics

Article Preview

Abstract:

The thermodynamic and thermo-elastic properties of ductile intermetallic compounds YAg with B2 structure are investigate with molecular dynamics. The thermodynamic properties at various temperatures, such as lattice parameter, cohesive energy, enthalpy of formation, heat capacity, vibrational entropy and vibrational free energy are computed. The present calculated results show good agreements with available experimental and previous calculated data. At high temperature, the heat capacity tends to a constant with obeys the classical equipartition law. At 300K, the heat capacity of YAg is 23.91 J mol-1 K-1. And those data enrich thermodynamic data-base for YAg. At the whole range 0-600K, the elastic constants follow a normal behavior with temperature that those decrease with increasing temperature, and satisfy the stability conditions for YAg compound. The Cauchy pressure and B/G for YAg increase with elevating temperature. Our results mean that increasing temperature may improve ductility of YAg.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

2814-2818

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.M. Russell. Adv. Eng. Mater. Vol. 5 (2003), p.629

Google Scholar

[2] K.A. Gschneidner Jr, A.Russell, A.Pecharsky, T.LOgrasso, et al. Nat. Mater. Vol. 2(2003), p.587

Google Scholar

[3] A. M. Russell, Z. Zhang, K. A. Gschneidner Jr, et al. Intermetallics Vol. 13(2005), p.565

Google Scholar

[4] J.R. Morris, Y.Ye, Y-B.Lee, B.N. Harmon, et al. Acta Mater. Vol. 52 (2004), p.4849.

Google Scholar

[5] Q.Chen, S.B. Biner. Acta.Mater. Vol. 53 (2005), p.3215.

Google Scholar

[6] Y.J. Shi, Y.L. Du, G. Chen, G.L .Chen. Phys. Lett. A Vol. 368(2007), p.495

Google Scholar

[7] Y.R.Wu, W.Y.Hu, S.C. Han. Physica B, Vol. 403(2008), p.3792.

Google Scholar

[8] Y.R.Wu, W.Y.Hu. Mater. Sci. Forum Vol. 689(2011), p.91.

Google Scholar

[8] Y.R.Wu, W.Y.Hu, L.S.Xu. Adv. Mater. Res. Vol. 472-475(2012), pp.1397-1401

Google Scholar

[9] Q. Chen, M. Ji, C.Z. Wang, K.M. Ho, S.B. Biner. Intermetallics, Vol. 18(2009), p.312

Google Scholar

[10] Z. Zhang, A.M. Russell, S.B. Biner, , et al. Intermetallics, Vol. 13(2005), p.559

Google Scholar

[11] Y.R. Wu, W.Y.Hu, S.C. Han. J. Alloys. Comp. Vol. 420(2006), p.83

Google Scholar

[12] Y.R. Wu, W.Y.Hu. Eur. Phys. J. B Vol. 57(2007), p.305

Google Scholar

[13] C.Colinet. J. Alloy. Comp. Vol. 225(1995), p.409

Google Scholar

[14] F.R. de Boer, R.Boom, W.C.M. Mattens, A.R. Miedema, A.K. Niessen. Coheion in Metals, Transition Metal Alloys, North-Holland, Amsterdam, (1988)

Google Scholar

[15] R.Wang, S.F. Wang, X.Z. Wu, A.P Liu. Intermetallics. Vol. 19(2011), p.1599

Google Scholar

[16] D.G. Pettifor. Mater.Sci. Tech. Vol.8 (1992), p.345

Google Scholar

[17] S.F. Pugh. Philos. Mag. Vol. 45(1954), p.823

Google Scholar

[18] K.Chen, L.R. Zhao, J.Rodgers, J.S. Tse. J. Phys. D: Phys. Vol. 36(2003), p.2725

Google Scholar