Ni/Y- Zeolite Catalysts for Carbon Dioxide Reforming of Methane

Article Preview

Abstract:

Carbon deposits play a crucial role in the performance of catalysts, in terms of controlling both reaction selectivity and activity, this is most often manifest through catalyst deactivation. Understanding the structure and electronic properties of the carbon deposits formed on the surface of a catalyst is therefore an importance key. In this study the catalytic performance of Ni based on Y-Zeolite (CBV300) prepared by incipient wetness impregnation. The prepared catalyst was tested in a micro tubular reactor using temperature ranges of 500, 600 and 700 °C at atmospheric pressure, using a total flow rate of 36 ml/min consisting of 2 ml/min of N2, 17 ml/min of CO2 and 17 ml/min of CH4. The calcination was carried out in the range of 500–900 °C. The catalyst is activated inside the reactor using hydrogen gas.The conversion of CH4 observed over 5wt%Ni/ Y-Zeolite at 700 °C were 59.6%. The supported Ni catalysts were characterized by BET and TG/DTA techniques.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

325-328

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Choudhary, V.R. Choudhary, Ang. Chem. Int. Ed. 47, (2008) 1828-147

Google Scholar

[2] P. Frontera • A. Aloise • A. Macario • F. Crea P. L. Antonucci • G. Giordano • J. B. Nagy, Res Chem Intermed (2011) 37:267–279

DOI: 10.1007/s11164-011-0249-3

Google Scholar

[3] B. Pavelec, S. Damyanova, K. Arishtirova, J. L. Fierro, L. Petrov, Appl. Catal. 30 (2007) 188-201.

Google Scholar

[4] A. N. Pinheiro, A. Valentini, J.M. Sasaki, A. C. Oliveira, Zeolites and Related Materials (2008) 205-208

Google Scholar

[5] Chang, J.-S., Park, S.E., and Chon, H., Appl. Catal., A,1996, vol. 145, 111-124.

Google Scholar

[6] Crisafulli C, Scire` S, Minio` S, Solarino L (2002) Appl Catal A Gen 225:1-11

Google Scholar

[7] A. Kaengsilalai, A. Luengnaruemitchai, S. Jitkarnka, S. Wongkasemjit, J. Power Sources 165 (2007) 347-352.

DOI: 10.1016/j.jpowsour.2006.12.005

Google Scholar

[8] K. Wang, X. Li, S. Ji, S. Sun, D. Ding, C. Li, Stud. Surf. Sci. Catal. 167 (2007) 367-372.

Google Scholar

[9] B. Pavelec, S. Damyanova, K. Arishtirova, J.L. Fierro, L. Petrov, Appl. Catal. A: Gen. 30 (2007) 188-201.

Google Scholar

[10] B. Bonelli, L. Forni, A. Aloise, J.B. Nagy, G. Fornasari, E. Garrone, A. Gedeon, G.Giordano, F. Trifiro, Microporous Mesoporous Mater. 101 (2007) 153-160.

DOI: 10.1016/j.micromeso.2006.11.006

Google Scholar

[11] J.A. Montoya, E. Romero-Pascual, C. Gimon, P. Del Angel, A. Monzon, Catal. Today 63 (2000) 71–85.

Google Scholar

[12] D. Halliche, O. Cherifi, Y.B. Taarit, A. Auroux, Kinet. Catal. 49 (2008).667-672.

DOI: 10.1134/s002315840805011x

Google Scholar

[13] A.S. Al–Fatish, A.A. Ibrahim, A.H. Fakeeha, M.A. Soliman, M.R.H. Siddiqui , A.E. Abasaeed, Appl. Catal., A: Gen. 364 (2009) 150-155.

DOI: 10.1016/j.apcata.2009.05.043

Google Scholar

[14] A.S. Al–Fatesh, and A. H. Fakeeha, Advanced Materials Research (2011) 233-235.

Google Scholar