Results on the Correlation between Molecular Architecture and Rheological Parameters of Metallocene-Catalyzed Polyethylenes

Article Preview

Abstract:

Dynamic rheological results of 17 commercial and noncommercial metallocene-catalyzed polyethylenes, such as shear thinning index(SHI), modulus of crossover point of store modulus and loss modulus (Gco) and flow activation energy(Ea), are presented. The effects of molecular weight distribution(MWD), and degree of short chain branching (SCB) determined by gel permeation chromatography (GPC) and FTIR, were analyzed. Plots of SHI versus MWD revealed the influence of branching level on the shear thinning behavior of polyethylenes. Gco was observed scaling with MWD for metallocene-catalyzed polyethylenes and the correlation between them was generated by MWD=193378*Gco . Correlation between flow activation energy measured by dynamic temperature sweep at low frequency and short chain branch -0.9038was also established for metallocene polyethylenes as SCB=7*10-8*Ea6.024. Thus, an alternative single rheological method, based on the effect of molecular structural parameters on dynamic rheological behaviors, was proposed to evaluate the polydispersity and short chain branching of metallocene-catalyzed polyethylene.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

736-741

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. L. Mantia, S. Roberto, G. Carianni, P. Mariani, Macromol. Mater. Eng. 290 (2005) 159-164.

Google Scholar

[2] X. L. Wei, S. Petrovan, R. J. Collier, J. Appl. Polym. Sci. 105 (2007) 309-316.

Google Scholar

[3] X. J. Wei, R. Collier, S. Petrovan, J. Appl. Polym. Sci. 104 (2007) 1184-1194.

Google Scholar

[4] G. Markus, Prog. Polym. Sci. 26 (2001) 895-944.

Google Scholar

[5] M. P. Wood, M. J. Dealy, A. D. Willem, O. R. David, Macromolecules 33 (2000) 7489-7499.

Google Scholar

[6] M. P. Wood, M. J. Dealy, Macromolecules 33 (2000) 7481-7488.

Google Scholar

[7] J. F. Vega, M. Fernández, A. Santamaría, A. M. Escalona, P. Lafuente, Macromol. Chem. Phys. 200 (1999) 2257-2268.

DOI: 10.1002/(sici)1521-3935(19991001)200:10<2257::aid-macp2257>3.0.co;2-l

Google Scholar

[8] V. Iakovos, P. Matthew, K. Katja, D. Benoît, W. Manfred, Rheol. Acta 46 (2007) 321-340.

Google Scholar

[9] J. Janzen, R. H. Colby, J. Mol. Struct. 485-486 (1999) 569-584.

Google Scholar

[10] R. N. Shroff, H. Mavridis, Macromolecules 32 (1999) 8454-8464.

Google Scholar

[11] V. Rolón-garrido, M. Wagner, Rheol. Acta 46 (2007) 583-593.

Google Scholar

[12] F. Guillaume, G. Schlatter, M. René, Rheol. Acta 44 (2004) 174-187.

Google Scholar

[13] W. W. Yau, Polymer 48 (2007) 2362-2370.

Google Scholar

[14] A. G. Franco, J. D. Lohse, G. C. Robertson, O. Georjon, Eur.Polym.J. 44 (2008) 376-391.

Google Scholar

[15] J. R. Severn, J. C. Chadwick, R. Duchateau, N. Friederichs, Chem. Rev. 105 (2005) 4073-4147.

Google Scholar

[16] V. Leal, P. Lafuente, R. Alicante, R. Pérez, S. Anton, Macromol. Mater. Eng. 291 (2006) 670-676.

Google Scholar

[17] A. C. García, A. B. Harrington, J. D. Lohse, Macromolecules 39 (2006) 2710-2717.

Google Scholar

[18] A. M. Escalona, P. Lafuente, J. F. Vega, Polym. Eng. Sci. 39 (1999) 2292-2303.

Google Scholar

[19] S. S. Bafna, J.Appl.Polym.Sci. 63 (1998) 111–113.

Google Scholar

[20] H. S. Wasserman, W. W. Graessley, Polym. Eng. Sci. 36 (2004) 852–861.

Google Scholar

[21] J. F. Stadler, J. Kaschta, M. Helmut, Macromolecules 41 (2008) 1328-1333.

Google Scholar