Synthesis and Properties of Novel Multiblock Thermoplastic Elastomers - Poly(ester-imide-ether) - Based on Pyromellitic Dianhydride, Glycine, 1,4-Butanediol and Polytetramethylene Glycol

Article Preview

Abstract:

A series of multiblock thermoplastic ploy(ester imide ether)s elastomers derived from polytetramethylene glycol of molecule weight is 1000 (PTMG1000), 1,4-butanediol (BD), and a new imide diacid monomer were synthesized of Pyromellitic dianhydride (PMDA) and glycine (GLY). was synthesized by two-step melting polycondensation method. Their chemical structures were studied by 1H-NMR spectroscopy as well as their thermal properties of the copolymers were investigated from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), respectively. Otherwise, the solubility of these polymers was characterized by various organic solvents. The effects of the hard/soft segment content on the thermal properties and soluble behavior were investigated. The result demonstrated that these copolymers had better thermal properties (Tm: 225~280°C and T5% : 350~353°C) than those of conventional thermoplastic elastomers due to the introduction of imide bond. At the same time, the polymers have good solubility.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

822-826

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.R. Kricheldorf, T. Wollheim, C.E. koning, H.G. Werumeus-Buning, V. Altstadt: Polymer Vol. 42 (2001), pp.6699-6708.

DOI: 10.1016/s0032-3861(01)00151-3

Google Scholar

[2] J. Krijgsman, D. Husken, R.J. Gaymans: Polymer Vol. 44 (2003), pp.7573-7588.

DOI: 10.1016/j.polymer.2003.09.043

Google Scholar

[3] S. Chen, J.W. Lan, S.D. Wu, S.J. Lin: Advanced Materials Research Vols. 332-334 (2011), pp.223-226.

Google Scholar

[4] T.Y. Lee, C.H. Lee, S. Cho, D.H. Lee, K.B. Yoon: Polym. Bull. Vol. 66 (2011), pp.979-990.

Google Scholar

[5] Q. Shi, P. Stagnaro, C.L. Cai, J.H. Yin, G. Costa, A. Turturro: Journal of Applied Polymer Science Vol. 10 (2008), pp.3963-3972.

Google Scholar

[6] R. Xie, D. Bhattacharjee, J. Argyropoulos: Journal of Applied Polymer Science Vol. 113 (2009), pp.839-844.

Google Scholar

[7] S. Mehdipour-Ataei: European Polymer Journal Vol.41 (2005), pp.91-96.

Google Scholar

[8] S. Chatti, M. Bortolussi, D. Bogdal, J.C. Blais, A. Loupy: European Polymer Journal Vol.42 (2006), pp.410-416.

Google Scholar

[9] R. Ukielski: Polymer Vol.41 (2000), pp.1893-1901

Google Scholar

[10] D.J. Liaw, P.N. Hsu, W.H. Chen, S.L. Lin: Macromolecules Vol. 35 (2002), p.4669.

Google Scholar

[11] I.C. kim, K.W. Park, T.M. Tak: Journal of Applied Polymer Science Vol. 73 (1999), pp.907-918.

Google Scholar

[12] H. R. Kricheldorf, T. Wollheim, C. E. Koning, G. W. Buning, V. Altstadt: Polymer Vol. 42 (2001), pp.6699-7008.

Google Scholar

[13] T.L. Wang, F.J. Huang: Polymer Vol. 41 (2000), pp.5219-5228.

Google Scholar

[14] G. Colomines, J.J. Robin, P. Notingher, B. Boutevin: European Polymer Journal Vol.45 (2009), pp.2413-2427.

DOI: 10.1016/j.eurpolymj.2009.04.029

Google Scholar

[15] A. Szymczyk: European Polymer Journal Vol. 45 (2009), pp.2653-2664.

Google Scholar

[16] C.T. Yen, W.C. Chen, D.J. Liaw, H.Y. Lu: Polymer Vol. 44 (2003), pp.7079-7087

Google Scholar