Study on the Properties of Poly(lactic Acid) and Thermal Plastic Starch Blended Materials Plasticized by PEG 200

Article Preview

Abstract:

In this paper, the blended materials of poly(lactic acid) (PLA) and thermal plastic starch (TPS) under the plasticization of polyethylene glycol (PEG) 200 were prepared. By detecting the thermal, rheological and tensile properties, it evaluated the plasticization effect of PEG 200 on blended materials. Specifically, for thermal properties, the addition of PEG 200 could improve mobile ability of PLA macromolecules, and accelerated them to form crystalline. But if the content of PEG 200 was more than 10%, this effect was impaired. For rheological properties, PEG 200 could change the fusant of blended materials from pseudoplastic fluid to newton fluid. However, if the PEG 200 was added too much, the blended material was too like perfect newton fluid to be prepared suitably. For tensile properties, when content of PEG 200 was more than 10%, the elongation and tensile modulus would changed sharply. All in all, 10% was the suitable addition parameter for PEG 200. Above this content, the plasticization effect of PEG 200 was too strong to impaired materials properties.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

813-817

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Yu, E. Petinakis, K. Dean, H. Liu and Q. Yuan: J. Appl. Polym. Sci. Vol. 119 (2011), p.2189

Google Scholar

[2] L. Yu, K. Dean and L. Li: Prog. Polym. Sci. Vol. 31 (2006), p.576

Google Scholar

[3] H. Liu, E. Xie, L. Yu, L. Chen and L. Li: Prog. Polym. Sci. Vol. 34 (2009), p.1348

Google Scholar

[4] Y. Yu, H. Liu, F. Xie, L. Chen and X. Li: Polym. Eng. Sci. Vol. 48 (2008), p.634

Google Scholar

[5] N. Wang, J. Yu and X. Ma: Polym. Int. Vol. 56 (2007), p.1440

Google Scholar

[6] A.M. Huneault and H. Li: Polymer. Vol. 48 (2007), p.270

Google Scholar

[7] K. Dean, L. Yu, S. Bateman and D. Y. Wu: J. Appl. Polym. Sci. Vol. 103 (2007), p.802

Google Scholar

[8] L. Yu, H. Liu, K. Dean and L. Chen: J. Polym. Sci. Pol. Phys. Vol. 46 (2008), p.2630

Google Scholar

[9] R. Acioli-Moura and X.S. Sun: Polym. Eng. Sci. Vol. 48 (2008), p.829

Google Scholar

[10] X.S. Sun, R. Acioli-Moura and W. Li: Int. Polym. Proc. Vol. 22 (2007), p.410

Google Scholar

[11] F. Xie, T. Xue, L. Yu, L. Chen, X. Li and X. Zhang: Macromol. Symp. Vol. 249 (2007), p.529

Google Scholar

[12] M. Kozlowski, R. Masirek, E. Piorkowska and M. Gazicki-Lipman: J. Appl. Polym. Sci. Vol. 105 (2007), p.269

Google Scholar

[13] W.Y. Jang, B.Y. Shin, T.J. Lee and R. Narayan: J. Ind. Eng. Chem. Vol. 13 (2007), p.457

Google Scholar

[14] C.S. Wu: Macromol. Biosci. Vol. 8 (2008), p.560

Google Scholar

[15] N. Wang, J. Yu and X. Ma: Polym. Composite. Vol. 29 (2008), p.551

Google Scholar

[16] P. Liu, L. Yu, X. Wang, D. Li, L. Chen and X. Li: J. Cereal. Sci. Vol. 51 (2010), p.388

Google Scholar

[17] F. Xie, L. Yu, B. Su, P. Liu, J. Wang, H. Liu and L. Chen: J. Cereal. Sci. Vol. 49 (2009), p.371

Google Scholar

[18] M. Li, P. Liu, W. Zou, L. Yu, F. Xie, H. Pu, H. Liu and L. Chen: J. Food. Eng. Vol. 106 (2011), p.95

Google Scholar