PET Depolymerization Catalyzed by Sulfates under Microwave Irradiation

Article Preview

Abstract:

Different sulfates were used as the catalysts of polyethylene terephthalate (PET) depolymerization under microwave of 250 watts, in which ZnSO4 presented the best catalysis in this reaction, and the depolymerization degree (DPD) of PET was reached to 90 %. It was found that the depolymerization was occurred simultaneously on the surface and the internal parts of PET chips by the observation of scanning electron microscope (SEM) images. In addition, DPD increased with the improvement of the polarization forces of these sulfates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 550-553)

Pages:

792-797

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Kržan: J Appl Polym Sci Vol. 69 (1998), p.1115.

Google Scholar

[2] U. Klun and A. Kržan: Polymer Vol. 41(2000), pp.4361-4365.

Google Scholar

[3] G. Sivalingam, N. Agarwal and G. Madras, AIChE J Vol. 49 (2003), p.1821.

Google Scholar

[4] D.S. Achilias, H.H. Redhwi, M.N. Siddiqui, A.K. Nikolaidis, D.N. Bikiaris and G.P. Karayannidis, J Appl Polym Sci Vol. 118 (2010), p.3066.

DOI: 10.1002/app.32737

Google Scholar

[5] M.M.A. Nikje and F. Nazari, Adv Polym Technol Vol. 25 (2006), p.242.

Google Scholar

[6] J.W. Chen, L.W. Chen and W.H. Cheng, Polym Int Vol. 48 (1999), p.885.

Google Scholar

[7] S. Baliga and T.W. Wong, J Polym Sci A: Polym Chem Vol. 27 (1989), p.2071.

Google Scholar

[8] U.R. Vaidya and V.M. Nadkarni, Ind Eng Chem Res Vol. 27 (1988), p.2056.

Google Scholar

[9] S. Mishra and A.S. Goje, Polym Int Vol. 52 (2003), p.337.

Google Scholar

[10] M.E. Cagiao, F.J.B. Calleja, C. Vanderdonckt and H.G. Zachmann, Polymer Vol. 34 (1993), p.2024.

Google Scholar

[11] D.S. Achilias, G.P. Tsintzou, A.K. Nikolaidis, D.N. Bikiaris and G.P. Karayannidis, Polym Int Vol. 60 (2011), p.500.

DOI: 10.1002/pi.2976

Google Scholar

[12] S.R. Shukla and A.M. Harad, Polym Degrad Stab Vol. 91 (2006), p.1850.

Google Scholar

[13] L.X. Liu, D. Zhang, L.J. An, H.Y. Zhang and Y.G. Tian, J Appl Polmy Sci Vol. 95 (2005), p.719.

Google Scholar

[14] D. Paszun and T. Spychaj, Ind Eng Chem Res Vol. 36 (1997), p.1373.

Google Scholar

[15] A.S. Goje, S.A. Thakur, V.R. Diware, S.A. Patil, P.S. Dalwale and S. Mishra, Polym Plast Technol Eng Vol. 43 (2004), p.1093.

Google Scholar

[16] J.D. Bernal and R.H. Fowler, J Chem Phys Vol. 1 (1933), p.515.

Google Scholar

[17] K. Morokuma and L. Pedersen, J Chem Phys Vol. 48 (1968), p.3275.

Google Scholar

[18] D. Paszun and T. Spychaj, Ind Eng Chem Res Vol. 36 (1997), p.1373

Google Scholar

[19] T. Yoshioka, T. Sato and A. Okuwaki, J Appl Polym Sci Vol. 52 (1994), p.1353.

Google Scholar

[20] J.B. Hubbard and L. Onsager, J Chem Phys Vol. 67 (1977), p.4850.

Google Scholar

[21] S.E. Novick, P.C. Engelking, P.L. Jones, J.H. Futrell and W.C. Lineberger, J Chem Phys Vol. 70 (1979), p.2652.

Google Scholar

[22] X.J. Wang, J. Yang, G.X. Li and G.L. Chen, China Plastics Industry Vol. 33 (2005), p.36.

Google Scholar

[23] D.R. Baghurst and D.M.P. Mingos, J Chem Soc Chem Commun Vol. 9 (1992), p.674.

Google Scholar

[24] K.X. Li, X.F. Song and D. Zhang, J Appl Polym Sci Vol. 109 (2008), p.1298.

Google Scholar

[25] X.F. Song, S.Z. Zhang and D. Zhang, J Appl Polym Sci Vol.117 (2010), p.3155.

Google Scholar

[26] R.D. Shannon, Acta Cryst A Vol. 32 (1976), p.751.

Google Scholar