Enzymatic Synthesis of Naringin Palmitate

Article Preview

Abstract:

Naringin esters are paid more attention in medical and functional food industry than naringin due to their higher stability and solubility in lipidic environments. Naringin palmitic acid esters were enzymatically synthesized with naringin and palmitic acid. The effects of solvent type, temperature, concentration and types of enzymes and the molar ratio of substrates on the conversion of naringin were investigated. Novozym 435 performed higher catalytic ability in tert-amyl alcohol in the esterification of naringin with palmitic acid. The conversion yield of naringin increased with the increase of temperature (30-70°C) and of the concentration of enzyme. The structure of the naringin palmitate was characterized by FT-IR, 1H-NMR and HPLC-MS. 1H-NMR spectroscopic analysis indicated the presence of an ester bond on the C-6 of the glucose moiety of naringin molecule.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1350-1356

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.A. Khairullina, Gerchikov, S. Denisova: Kinetics and Catalysis Vol. 51 (2010) p.219

Google Scholar

[2] S. Tsai, S. L. Shiau, J. Lin: British journal of pharmacology Vol. 126 (1999) p.673

Google Scholar

[3] M.G. Salas, H. C. Geronazzo, M. Daz, S. Resnik: Food Chemistry Vol. 124 (2011) p.1411

Google Scholar

[4] L. Pari, K. Amudha: European journal of pharmacology Vol. 650 (2011) p.364

Google Scholar

[5] B. Danieli, M. Luisetti, G. Sampognaro, G. Carrea, S. Riva: Journal of Molecular Catalysis B: Enzymatic Vol. 3 (1997) p.193

DOI: 10.1016/s1381-1177(96)00055-0

Google Scholar

[6] S. Gayot, X. Santarelli, D. Coulon: Journal of biotechnology Vol. 101 (2003) p.29

Google Scholar

[7] B. Danieli, P. D. Bellis, G. Carrea, S. Riva: Helvetica Chimica Acta Vol. 73 (1990) p.1837

DOI: 10.1002/hlca.19900730705

Google Scholar

[8] S. Youn, H. Kim, T. Kim, C. Shin: Journal of Molecular Catalysis B: Enzymatic Vol. 46 (2007) p.26

Google Scholar

[9] M. Ardhaoui, A. Falcimaigne, S. Ognier, J. Engasser, P. Moussou, G. Pauly, M. Ghoul: Journal of biotechnologyVol. 110 (2004) p.265

DOI: 10.1016/j.jbiotec.2004.03.003

Google Scholar

[10] E. Enaud, C. Humeau, B. Piffaut, M. Girardin: Journal of Molecular Catalysis B: Enzymatic Vol. 27 (2004) p.1

DOI: 10.1016/j.molcatb.2003.08.002

Google Scholar

[11] Y. Yan, U. Bornscheuer, L. Cao, R. Schmid: Enzyme and Microbial Technology Vol. 25 (1999) p.725

Google Scholar

[12] B. Calvo, I. Collado, E. Cepeda: Journal of Chemical & Engineering Data Vol. 54 (2008) p.64

Google Scholar

[13] F. Lima, D. Pyle, J. Asenjo: Biotechnology and Bioengineering Vol. 46 (1995) p.69

Google Scholar

[14] A. Zaks, A. Klibanov: Journal of Biological Chemistry Vol. 263 (1988) p.8017

Google Scholar

[15] T. Ema, M. Kageyama, T. Korenaga, T. Sakai: Asymmetry Vol. 14 (2003) p.3943

Google Scholar

[16] D. Coulon, A. Ismail, M. Girardin, B. Rovel, M. Ghoul: Journal of biotechnology Vol. 51 (1996) p.115

Google Scholar

[17] S. Radzi, S. Muhamad, S. Othman, M. Rahman, H. Noor: Journal of Fundamental Sciences Vol. 6 (2010).

Google Scholar

[18] L. Guillardeau, D. Montet, N. Khaled, M. Pina, J. Graille: Tenside Surfactants Detergents Vol. 29 (1992) p.342

DOI: 10.1515/tsd-1992-290510

Google Scholar

[19] A. Yahya, W. Anderson, M. Moo-Young: Enzyme and Microbial Technology Vol. 23 (1998) p.438

Google Scholar

[20] H. Ghamgui, N. Miled, A. Reba , M. Karra-chaābouni, Y. Gargouri: Enzyme and Microbial Technology Vol. 39 (2006) p.717

Google Scholar

[21] A. Kontogianni, V. Skouridou, V. Sereti, H. Stamatis, F. Kolisis: European Journal of Lipid Science and Technology Vol. 103(2001) p.655

DOI: 10.1002/1438-9312(200110)103:10<655::aid-ejlt655>3.0.co;2-x

Google Scholar