Optimization of the Enzymatic Hydrolysis of Tilapia Frames

Article Preview

Abstract:

Tilapia frames were subjected to enzymatic hydrolysis using Flavouzryme and Papain with a ratio of 2:1. The relationship of temperature (40 to 60°C), enzyme: substrate ratio (0.5% to 4.5%), initial pH (6.0 to 8.0) and hydrolysis time (1h to 9h) to the degree of hydrolysis were determined. The enzymatic hydrolysis was optimized for maximum degree of hydrolysis using surface response methodology. The optimum conditions for enzymatic hydrolysis of tilapia frames were temperature 53°C, enzyme : substrate ratio of 3.5%, initial pH 7.2, and reaction time 7h. Under these conditions a degree of hydrolysis of 40.01% were obtained. The yield of free amino acids in the hydrolysate was 46.61mg/g tilapia frames. The flavor amino acids and essential amino acids occupied up to 31.8% and 49.0% of the total free amino acids respectively. The hydrolysate of waste tilapia frames showed good potential for applications such as protein supplementation in food system.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1387-1394

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. D. Zeng, J. Z. Wu, S. Y. Ou and J. Jin: Food Sci. Vol. 31 (2010), p.342

Google Scholar

[2] Q. X. Huang, J. H. Sun, X. D. Lan, L. B. Jian, Z. F. Tong and D. K. Liao: Food Sci. Vol. 33 (2012), p.53

Google Scholar

[3] M. Zhao and C. Y. Wu: Food Res. Dev. Vol. 28 (2007), p.48

Google Scholar

[4] M. R. Ovissipour and M. R. Ghomi: Biotechnology in seafood production (Islamic Azad University Publication, Iran 2009).

Google Scholar

[5] H. G. Kristinsson and B. A. Rasco: Crit. Rev. Food Sci. Vol. 40 (2000), p.43

Google Scholar

[6] R. Šližyte, T. Rustad and I. Storrø: Process Biochem. Vol. 40 (2005), p.3680

Google Scholar

[7] P. k. Wanasundara, R. Amarowicz, R. B. Pegg and P. J. Shand: Food Sci. Vol. 67 (2002), p.623

Google Scholar

[8] V. M. Silva, K. J. Paek and M. D. Hubinger: J. Food Sci. Vol. 75 (2010), p. C36

Google Scholar

[9] F. Guerard, L. Dufosse, D. Broise and A. Binet: J. Mol. Catal. B: Enzym. Vol. 11 (2001), p.1051

Google Scholar

[10] G. Chabanon, I. Chevalot, X. Framboisier, S. Chenu and I. Marc: Process Biochem. Vol. 42 (2007), p.1419

DOI: 10.1016/j.procbio.2007.07.009

Google Scholar

[11] T. J. Shankar, S. Sokhansan, S. Bandyopadhyay and A. S. Bawa: Food Bioprocess Technol. Vol. 3 (2010), p.498

Google Scholar

[12] T. K. Wei and S. Manickam: Asia-Pac. J. Chem. Eng. Vol. 7 (2012), p. s125

Google Scholar

[13] O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall: J. Biol. Chem. Vol. 193 (1951), p.265

Google Scholar

[14] S. Nilsang, S. Lertsiri, M. Suphantharika and A. Assavanig: J. Food Eng. Vol. 70 (2005), p.571

DOI: 10.1016/j.jfoodeng.2004.10.011

Google Scholar

[15] M. R. Ovissipour, A. M. Abedian, A. Motamedzadegan, B. Rasco, R. Safari and H. Shahiri: 18th national congress on food technology (Iran 2008)

Google Scholar