Theoretical Study of 4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diaza-tetracyclododecane (TEX)

Article Preview

Abstract:

The heat of formation (HOF) for a caged owurtzitane analogue compound of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diaza-tetracyclododecane (TEX) was obtained by density functional theory B3LYP method with 6-31+G** basis set. The isodesmic reaction, instead of atomization reaction, makes good use of the available experimental data of HOFs and thus ensures the credibility of the result. The value of HOF of TEX is –448.37 kJ/mol. The predicted detonation velocity is about 8.2 km/s and detonation pressure is 31.44 GPa. The dissociation energy for the N-NO2 bond of TEX is 165.43 kJ/mol. There is large strain in TEX with strain energy of 62.47 kJ/mol. The nitro group interaction in TEX is small.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1618-1623

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.H. Boyer, V.T. Ramakrishnan and M. Vedachalam: Heterocycles. Vol. 31 (1990), p.479

Google Scholar

[2] J.P. Agrawal and R.D. Hodgson: Organic Chemistry of Explosives. West Sussex: John Wiley & Sons Ltd (2007)

Google Scholar

[3] K. Karaghiosoff, T.M. Klapotke, A. Michailovski and G. Holl: Acta. Crys. Vol. 58 (2002), p.580

Google Scholar

[4] B. Dobratz and P. Crawford: LLNL Explosives Handbook-Properties of Chemical Explosives and Explosive Simulants. Lawrence Livermore National Laboratory, California (1985)

DOI: 10.2172/6530310

Google Scholar

[5] Y.P. Lei, S.L. Xu, S.Q. Yang and T. Zhang: Chin. J. Energetic. Mater. Vol. 14 (2006), p.467

Google Scholar

[6] G. Krien, H.H. Licht and J. Zierath: Thermochim. Acta. Vol. 6 (1973), p.465

Google Scholar

[7] J.L. Lyman, Y.G. Liau and H.V. Brand: Combust. Flame. Vol. 130 (2002), p.185

Google Scholar

[8] E.S. Domalski and E.D. Hearing: J. Phys. Chem. Ref. Data Vol. 22 (1993), p.805

Google Scholar

[9] O.V. Dorofeeva and P.I. Tolmach: Thermochim. Acta. Vol. 240 (1994), p.47

Google Scholar

[10] C.J. Cobos: J. Mol. Struct. (theochem) Vol. 714 (2005), p.147

Google Scholar

[11] M. Zhao and B.M. Gimarc: J. Phys. Chem. Vol. 97(1993), p.4023

Google Scholar

[12] M.J. Kamlet and S.J. Jacobs: J. Chem. Phys. Vol. 48 (1968), p.23

Google Scholar

[13] J.J.P. Stewart: J. Comput. Aid. Mol. Des. Vol. 4 (1990), p.1

Google Scholar

[14] M.J. Frisch, G.W. Trucks and H.B. Schlegel: Gaussian03, Revision B.03; Gaussian, Inc., Pittsburgh, PA ( 2003)

Google Scholar

[15] X.H. Ju, Z.Y. Wang and L. Qiu: J. Chin. Chem. Soc. Vol. 55 (2008), p.1272

Google Scholar

[16] M.W. Wong: Chem. Phys. Lett. Vol. 256 (1996), p.391

Google Scholar

[17] D.R. Lide: CRC Handbook of Chemistry and Physics, 88th Edition (Internet Version 2008), CRC Press/Taylor and Francis, Boca Raton, FL. (2008)

DOI: 10.1021/ja077011d

Google Scholar

[18] Y.N. Matyushin, I.B. V'yunova, V.I. Pepekin and A.Y. Apin: Russ. Chem. Bull. Vol. 20 (1971), p.2320

Google Scholar