Detection of High Energy Materials Using Support Vector Classification

Article Preview

Abstract:

Based on the element contents of N, O, H and C of objects detected by γ-ray resonance, support vector classification (SVC) method was used to construct the model for distinguishing high energy materials (HEMs) from ordinary ones. It was found that the accuracy of prediction was 95.9% based on the leave-one-out cross validation (LOOCV) test. The results indicated that the performance of SVC model is good enough to detect HEMs in the presence of ordinary materials for the purpose of security checking.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1628-1631

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Kolla, Detecting hidden explosives. Anal. Chem. 1995, 67(5), 184A-189A.

DOI: 10.1021/ac00101a722

Google Scholar

[2] B.J. Michlich, M.K. Harper, etc, Illicit substance detection using fast-neutron transmission spectroscopy. Nucl. Instrum. Meth. A. 1994, 353, 646-649.

Google Scholar

[3] S. Singh, M. Singh, Explosives Detection Systems (EDS) for Aviation Security, Signal Processing. 2003, 83, 31-55.

DOI: 10.1016/s0165-1684(02)00391-2

Google Scholar

[4] N. Vladimir, V. Vapnik, Statistical Learning Theory; John Wiley and Sons, USA, 1998.

Google Scholar

[5] X.J. Yao, A. Panaye, J.P. Doucet, R.S. Zhang, H.F. Chen, M.C. Liu, Z.D. Hu, B.T. Fan, Comparative Study of QSAR/QSPR Correlations Using Support Vector Machines, Radial Basis Function Neural Networks, and Multiple Linear Regression. J. Chem. Inf. Comput. Sci. 2004, 44 (4), 1257 -1266.

DOI: 10.1021/ci049965i

Google Scholar

[6] C.X. Xue, R.S. Zhang, H.X. Liu, M.C. Liu, Z.D. Hu, B.T. Fan, Support Vector Machines-Based Quantitative Structure-Property Relationship for the Prediction of Heat Capacity. J. Chem. Inf. Comput. Sci. 2004, 44 (4), 1267 -1274.

DOI: 10.1021/ci049934n

Google Scholar

[7] W.C. Lu, N. Dong, G. Naray-Szabo, Predicting Anti-HIV-1 Activities of HEPT-analog Compounds by Using Support Vector Classification QSAR & Comb. Sci. 2005, 24(9), 1021 – 1025

DOI: 10.1002/qsar.200530117

Google Scholar

[8] N. DONG, W.C. Lu, N.Y. Chen, Y.C. Zhu, K.X. Chen,Using Support Vector Classification for SAR of Fentanyl Derivatives, Acta. Pharmacol. Sin. 2005, 26 (1), 107–112.

DOI: 10.1111/j.1745-7254.2005.00014.x

Google Scholar

[9] X. Liu, H. C. Chen, T. A. Liu, Y. L. Li, Z. R. Lu, W. C. Lu. Application of PCA-SVR to NIR prediction model for tobacco chemical composition[J]. Spectroscopy and Spectral Analysis, 2007, 27(12): 2460-2463.

Google Scholar

[10] X. Liu, W. C. Lu, S. L. Jin, Y. W. Li, N. Y. Chen. Support vector regression applied to materials optimization of sialon ceramics[J]. Chemometrics and Intelligent Laboratory Systems, 2006, 82(1-2): 8-14.

DOI: 10.1016/j.chemolab.2005.08.011

Google Scholar

[11] T. H. Gu, W. C. Lu, X. H. Bao, N. Y. Chen. Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors[J]. Solid State Sciences, 2006, 8(2): 129-136.

DOI: 10.1016/j.solidstatesciences.2005.10.011

Google Scholar

[12] S. S. Yang, W. C. Lu, N. Y. Chen, Q. N. Hu. Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes[J]. Journal of Molecular Structure-Theochem, 2005, 719(1-3): 119-127.

DOI: 10.1016/j.theochem.2004.10.060

Google Scholar

[13] L. Grodzins, Photons In-Photons Out: Non-Destructive Inspection of Containers Using X-Ray and Gamma Ray Techniques. Proc. Of the First Int. Symp. On Explosives Detection Tech. 1991, 11, 201-231.

Google Scholar

[14] L. Grodzins, Nuclear Technologies for Finding Clandestine Explosives. International Conference on the Applications of Nuclear Techniques. G. Vouvopoulos, T. Paradellis,( Eds.), World Scientific Press, Crete, Greece, 1991, pp.338-360.

Google Scholar

[15] L. Grodzins, Nuclear Techniques for Finding Chemical Explosives in Airport Luggage. Nucl. Inst. And Meths. 1991, B56/57, 829-833.

DOI: 10.1016/0168-583x(91)95040-k

Google Scholar

[16] L. Grodzins, Nuclear and x-ray Technologies for Airport Security. MIT Symposium on Technological Measures for Airport Security. April, 1990.

Google Scholar

[17] Editing Committee. New Safety Handbook of Dangerous Materials, Chemical Industry Press, Beijing, 1980.

Google Scholar

[18] F.C. Xu, Basic Biological Chemistry; South China University of Technology Press, Guangzhou, 1999.

Google Scholar

[19] Editing Committee. Resin and Plastic of Chemical Engineering Encyclopedia Professional Volumes, Chemical Industry Press, Beijing, 2003.

Google Scholar