Structure and Properties of Lignosulfonate with Different Molecular Weight Isolated by Gel Column Chromatography

Article Preview

Abstract:

The characteristics of structural and properties of four sodium lignosulfonate (LS) fractions with narrow molecular weight (Mw) distribution isolated by gel column chromatography were investigated with infrared spectroscopy, elemental analysis, 13C NMR analysis, fluorescence spectroscopy and thermogravimetric analysis. LS with higher Mw possesses more aryl ring structural units and the side-chain of the structural unit is mostly composed of propanol rather than propane. With the increase of Mw of LS, the contents of sulfonic group and methoxy group decrease. The critical aggregation concentration (CAC) of LS aqueous solution was determined by fluorescence spectroscopy, which shows that the CAC of LS with higher Mw is lower, indicating that the LS molecule with low Mw is easier to aggregate. TGA results indicate that the weight loss of LS tends to be slow and the thermal stability enhances with the increase in Mw. The dispersive effect of LS with different Mw to dimethomorph suspension shows that the sediment layer thickness and index of dispersity and stability both decease with increasing Mw of LS, which indicates that LS with higher Mw has a better dispersion performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

2024-2030

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Horácek, F. Homola, I. Kubicková, D. Kubicka: Catalysis Today. Vol. 179 (2012), p.191

Google Scholar

[2] D. Areskogh, J.B. Li, G. Gellerstedt, G. Henriksson: Industrial Crops and Products. Vol. 32 (2010), p.458

DOI: 10.1016/j.indcrop.2010.06.016

Google Scholar

[3] Y. Park, W.O.S. Doherty, P.J. Halley: Ind. Crops Prod. Vol. 27 (2008), p.163

Google Scholar

[4] X.P. Ouyang, X.Q. Qiu, H.M. Lou, D.J. Yang: Ind. Eng. Chem. Res. Vol. 45 (2006), p.5716

Google Scholar

[5] Z.L. Li, Y.Y. Ge: Braz. Chem. Soc. Vol. 22 (2011), p.1866

Google Scholar

[6] D.J. Yang, X.Q. Qiu, M.S. Zhou, H.M. Lou: Energy Conversion and Management. Vol. 48 (2007), p.2433

Google Scholar

[7] R.W. Thring, M.N. Vanderlaan, S.L. Griffin: Wood Chem Technol. Vol. 16 (1996), p.139

Google Scholar

[8] T.Q. Yuan, J. He, F. Xu, R.C. Sun: Polymer Degradation and Stability. Vol. 94 (2009), p.1142

Google Scholar

[9] A. Toledano, A. García, I. Mondragon, Labidi: Separation and Purification Technology. Vol. 71 (2010), p.38

Google Scholar

[10] M. J. Drews, M. Barr, M. A. Williams: Ind. Eng. Chem. Res. Vol. 39 (2000), p.4784

Google Scholar

[11] X.P. Ouyang, P. Zhang, X.Q. Qiu, Y.H. Deng, P. Chen: Ind. Eng. Chem. Res. Vol. 50 (2011), p.10792

Google Scholar

[12] B. Scholze, C. Hanser, D. Meier: Journal of Analytical and Applied Pyrolysis. Vol. 58–59 (2001), p.387

Google Scholar

[13] D.V. Evtuguin, C.P. Neto, A.M.S. Silva, P.M. Domingues, F.M.L. Amado, D. Robert, O. Faix: Agric. Food Chem. Vol. 49 (2001), p.4252

Google Scholar

[14] Y.H. Deng, X.J. Feng, M.S. Zhou, Y. Qian, H.F. Yu, X.Q. Qiu: Biomacromolecules. Vol. 12 (2011), p.1116

Google Scholar

[15] S. Contreras, A.R. Gaspar, A. Guerra, L.A. Lucia, D.S. Argyropoulos: Biomacromolecules. Vol.9 (12) (2008), p.3362

Google Scholar

[16] P. Dutta, J. Dey, J. Ghosh, R.R. Nayaket: Polymer. Vol. 50 (2009), p.1516

Google Scholar

[17] J. Aguiar, P. Carpena, J.A. Molina-Bolívar, C. Carnero Ruiz: Journal of Colloid and Interface Science. Vol. 258 (2003), p.116

Google Scholar

[18] J. Ke, D. Singh, X.W. Yang, S.L. Chen: biomass and bioenergy. Vol. 35 (2011), p.3617

Google Scholar

[19] S. Sarkar, B. Adhikari: Polymer Degradation and Stability. Vol. 73 (2001), p.169

Google Scholar