Spctrophotometric Determination of Trace Ruthenium by its Catalytic Effect on Oxidation of 3,5-DiBr-PADAP with KIO4

Article Preview

Abstract:

A spectrophotometric method for the determination of ruthenium (III) is described, based on its catalytic effect on the oxidation reaction of 2-[(3,5-dibromo-2-pyridy)azo]-5-diethylaminophenol (3,5-diBr-PADAP) with potassium periodate in 0.008 mol/L sodium hydroxide medium and in the presence of OP emulsifier (p-iso-octyl phenoxy polyethoxy ethanol) at 100 °C. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 530 nm for the catalytic reaction of 3,5-diBr-PADAP. The calibration curve for the recommended method was linear in the concentration range over 0.04 µg/L–1.0 µg/L and the detection limit of the method for Ru (III) is 0.012 µg/L. The influence of the factors such as acidity, concentration of reactants, reaction time, temperature and co-existing ions on the reaction is discussed. The optimum conditions of reaction are established and some kinetic parameters are determined. The apparent activation energy of catalytic reaction is 100.48 kJ/mol. The relative standard deviation for the determination of ruthenium (III) at the concentration of 0.02 µg/25mL is calculated to be 2.30 % (n=11). In combination with distilled separation, the method has been successfully applied for the determination of trace ruthenium (III) in some ores and metallurgy products with the relative standard deviations (RSD) over 1.8 %–2.9 % and the recovery over 98.1 %–103.1 %.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

1999-2005

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Vinka, V. Vlasta and A. Tatjana: Croatica Chem. Acta, Vol. 78 (2005), p.617

Google Scholar

[2] M. Balcerzak: Crit. Rev. Anal. Chem. Vol. 32 (2002), p.181

Google Scholar

[3] K. Berggren, T.H. Steinberg, W.M. Lauber, J.A. Carroll, M.F. Lopez, E. Chernokalskaya, L. Zieske, Z. Diwu, R.P. Haugland and W.F. Patton: Anal. Biochem. Vol. 276 (1999), p.129

DOI: 10.1006/abio.1999.4364

Google Scholar

[4] Y. Liu, F. Ai and B. H. Jiang: Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing Vol. 438 (2006), p.999

Google Scholar

[5] B. Rezaei and M. Mokhtaria: Spectrochim. Acta Pt. A Vol. 66 (2007), p.359

Google Scholar

[6] A. Waseem, M. Yaqoob and A. Nabi: Anal. Sci. Vol. 22 (2006), p.1095

Google Scholar

[7] C.A. Lindino and L. O. S. Bulhões: J. Braz. Chem. Soc. Vol. 15 (2004), p.178

Google Scholar

[8] N.A. Alarfaj and S.A.A. El-Razeq: J. Pharm. Biomed. Anal. Vol. 41 (2006), p.1423

Google Scholar

[9] K. Uchikura, K. Sakurada, K. Tezuka and K. Koike: Bunseki Kagaku Vol. 51 (2002), p.953

DOI: 10.2116/bunsekikagaku.51.953

Google Scholar

[10] T. Okamura, T. Iwamura, A. Ito, M. Kaneko, M. Yamaguchi, H. Yamamoto, N. Ueyama, H. Kuyama, E. Ando, S. Norioka, T. Nakazawa, R. Mausi and S. Kuramitsu: Chem. Lett. Vol. 34 (2005), p.332

DOI: 10.1246/cl.2005.332

Google Scholar

[11] A. Ito, T. Okamura, H. Yamamoto, N. Ueyama, K. Ake, R. Mausi, S. Kuramitsu and S. Tsunasawa: Anal. Chem. Vol. 77 (2005), p.6618

DOI: 10.1021/ac050534o

Google Scholar

[12] N. Labhsetwar, H. Minamino, M. Mukherjee, T. Mitsuhashi, S. Rayalu, M. Dhakad, H. Haneda, J. Subrt and S. Devotta: J. Mol. Catal. A: Chem. Vol. 261 (2007), p.213

DOI: 10.1016/j.molcata.2006.08.013

Google Scholar

[13] N.K. Labhsetwar, V. Balek, E. Vecernikova, P. Bezdicka, J. Subrt, T. Mitsuhashi, S. Kagne, S. Rayalu and H. Haneda: J. Colloid Interface Sci. Vol. 300 (2006), p.232

DOI: 10.1016/j.jcis.2006.03.049

Google Scholar

[14] M. Sivagamasundari and A.Ramesh: Spectrochim. Acta Pt. A, Vol. 66 (2007), p.427

Google Scholar

[15] A.E. Mucientes, F. Santiago, M.C. Almena, F.J. Poblete and C.A.M. Rodriguez: Int. J. Chem. Kinet. Vol. 34 (2002), p.421

Google Scholar

[16] V.R. Landaeta, L. Gonsalvi and M.Peruzzini: J. Mol. Catal. A: Chem. Vol. 257 (2006), p.112

Google Scholar

[17] Z.W. Yang, Q.X. Kang , F. Quan and Z.Q. Lei: J. Mol. Catal. A: Chem. Vol. 261 (2007), p.190

Google Scholar

[18] L.V. Yatsimirski and L.P. Tikhonova: Talanta Vol. 2 (1987), p.69

Google Scholar

[19] S.R. Crouch, T.F. Cullen and A. Scheeline: Anal. Chem. Vol. 70 (1998), p. 53R

Google Scholar

[20] X.L. Liu, Z.Y. Kou and X.G. Chen: Metallurgical Analysis Vol. 23 (2003), p.6 (In Chinese)

Google Scholar

[21] R. Behzad and M. Najmeh: Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy Vol. 66 (2007), p.869

Google Scholar

[22] R.M. Naik, A. Srivastava and Prasad S. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy Vol. 69 (2008), p.193

DOI: 10.1016/j.saa.2007.03.030

Google Scholar

[23] B. Rezaei and M. Keyvanfard: Journal of Hazardous Material Vol.151 (2008), p.456

Google Scholar

[24] M. Keyvanfard: Proceedings of World Academy of Scince, Engineering and Technology, Vol. 33 (2008), p.391

Google Scholar

[25] W.B. Qi and B.Y. Pu: Surfactant and Analytical Chemistry (Chinese Metric Publications, Perking 1984) (In Chinese)

Google Scholar

[26] S.X. Cai and C. Huang: Analysis of Precious Metals (Chinese Metallurgy Industrial Publications, Perking 1984) (In Chinese)

Google Scholar