Preparation of Cellulose Succinates with High Degree of Substitution in Solvent System [C4mim]Cl/DMSO

Article Preview

Abstract:

Homogeneous derivatization of cellulose was investigated with succinic anhydride (SA) in a solvent system containing 1-butyl-3-methylimidazolium chloride ionic liquid ([C4mim]Cl) and dimethylsulfoxide (DMSO) using iodine, N-bromosuccinimide (NBS), and 4-dimethylaminopyridine (DMAP) as a catalyst. The results showed that the high degree of substitution (DS) of modified cellulose significantly increased from 0.24 without any catalysts to 0.84, 2.31, and 2.34 under same conditions except with I2, NBS, and DMAP, respectively, as a catalyst. The possible mechanism of succinoylation catalysed with different catalysts was discussed. Fourier transform infrared and solid-state cross-polarization/magic angle spinning 13C NMR spectroscopies also provided evidences of catalyzed homogeneous succinoylation reaction. The results indicated that iodine, NBS, and DMAP could effectively improve the succinoylation efficiency of cellulose in [C4mim]Cl/DMSO.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

244-249

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Mohanty, M. Misra and L.T. Drzal. Journal of Polymers and the Environment (2002), 10: 19-26.

Google Scholar

[2] Y. Ogaki, Y. Shinozuka, M. Hatakeyama, T. Hara, N. Ichikuni and S. Shimazu. Chemistry Letters (2009), 38: 1176-1177.

DOI: 10.1246/cl.2009.1176

Google Scholar

[3] A. Pandey, C.R. Soccol, P. Nigam and V.T. Soccol. Bioresource Technology (2000), 74: 69-80.

DOI: 10.1016/s0960-8524(99)00142-x

Google Scholar

[4] O.A. El Seoud, G.A. Marson, G.T. Giacco and E. Frollini. Macromolecular Chemistry and Physics (2000), 201: 882-889.

Google Scholar

[5] R.P. Swatloski, S.K. Spear, J.D. Holbrey and R.D. Rogers. Journal of the American Chemical Society (2002), 124: 4974-4975.

Google Scholar

[6] Y. Fukaya, A. Sugimoto and H. Ohno. Biomacromolecules (2006), 7: 3295-3297.

Google Scholar

[7] D. de Maria and A. Martinsson. Analyst (2009), 134: 493-496.

Google Scholar

[8] N. Kamiya, Y. Matsushita, M. Hanaki, K. Nakashima, M. Narita, M. Goto and H. Takahashi. Biotechnology Letters (2008), 30: 1037-1040.

DOI: 10.1007/s10529-008-9638-0

Google Scholar

[9] J. Wu, J. Zhang, H. Zhang, J.S. He, Q. Ren and M. Guo. Biomacromolecules (2004), 5: 266-268.

Google Scholar

[10] M. Granstrom, J. Kavakka, A. King, J. Majoinen, V. Makela, J. Helaja, S. Hietala, T. Virtanen, S.L. Maunu, D.S. Argyropoulos and I. Kilpelainen. Cellulose (2008), 15: 481-488.

DOI: 10.1007/s10570-008-9197-5

Google Scholar

[11] T. Yoshimura, K. Matsuo and R. Fujioka. Journal of Applied Polymer Science (2006), 99: 3251-3256.

Google Scholar

[12] A. Biswas, R.L. Shogren and J.L. Willett. Biomacromolecules (2005), 6: 1843-1845.

Google Scholar

[13] F. Xu, C.F. Liu, J.L. Ren, J.X. Sun, R.C. Sun, S. Curling, P. Fowler and M.S. Baird. Separation Science and Technology (2007), 42: 1809-1829.

Google Scholar

[14] B. Karimi and H. Seradj. Synlett (2001), 519-520.

Google Scholar

[15] B. Karimi and H. Seradj. ChemInform (2001), 32: 74-74.

Google Scholar

[16] R.C. Sun, X.F. Sun and F.Y. Zhang. Polymer International (2001), 50: 803-811.

Google Scholar

[17] C.A.S. Hill, N.S. Cetin and N. Ozmen. Holzforschung (2000), 54: 269-272.

Google Scholar

[18] J.X. Sun, F. Xu, Z.C. Geng, X.F. Sun and R.C. Sun. Journal of Applied Polymer Science (2005), 97: 322-335.

Google Scholar

[19] R.C. Sun and J. Tomkinson. Separation Science and Technology (2004), 39: 391-411.

Google Scholar

[20] R. Jayakumar, R. Balaji and S. Nanjundan. European Polymer Journal (2000), 36: 1659-1666.

Google Scholar