Synthesis and Characterization of LiVOPO4 Cathode Material by Solid-State Method

Article Preview

Abstract:

Lithium vanadyl phosphate (β-LiVOPO4) cathode material for lithium ion batteries was prepared via a novel solid state method. The microstructure and electrochemical properties of the sample were characterized by X-ray diffraction, scanning electron microscopy, galvanostatically discharge/discharge and cyclic voltammetry techniques, respectively. X-ray diffraction patterns showed that β-LiVOPO4 has an orthorhombic structure with space group of Pnma. The discharge capacity of LiVOPO4 sample is 89.9 mAh•g-1 in the first cycle, and in the 50th cycle it is 76.2 mAh•g-1 at the current density of 10 mA•g-1 between 3.0-4.5 V. The chemical diffusion coefficient ( ) value determined from CV is about 10-11 cm2 s-1. Experimental results indicate that further efforts are needed to improve electrochemical performances of LiVOPO4 material synthesized by solid state method; however, it has a higher discharge plateau around 3.9 V.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

436-439

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough: J. Electrochem. Soc. Vol. 144 (1997), p.1188

Google Scholar

[2] M. Y. Saidi, J. Barker, H. Huang and et al: J. Power Sources Vol. 119-121 (2003), p.266

Google Scholar

[3] J. Barker, M. Saidi and J. L. Swoye: J. Electrochem. Soc. Vol. 151(2004), p.A796

Google Scholar

[4] B. M. Azmi, T. Ishihara, H. Nishiguchi and et al: J. Power Sources Vol. 146 (2005), p.525

Google Scholar

[5] M. M. Ren, Z. Zhou, L. W. Su and et al: J. Power Sources Vol. 189 (2009), p.786

Google Scholar

[6] J. Ganbicher, T. L. Mercier, Y. Chahre and et al: J. Electrochem. Soc. Vol. 146 (1999), p.4375

Google Scholar

[7] K. Saravanan, H. S. Lee, M. Kuezma and et al: J. Mater. Chem. Vol. 21 (2011), p.10042

Google Scholar

[8] T. A. Kerr, J. Gaubicher and L. F. Nazar: Electrochem. Solid State Lett. Vol. 3 (2000), p.460

Google Scholar

[9] N. Dupre, J. Gaubicher, T. L. Mercier and et al: Solid State Ionics Vol. 140 (2001), p.209

Google Scholar

[10] M. M. Ren, Z. Zhou, X. P. Gao and et al: J. Phys. Chem. C Vol. 112 (2008), p.13043

Google Scholar

[11] K. H. Lii, C. H. Li, C. Y. Cheng and et al: J. Solid State Chem. Vol. 95 (1991), p.352

Google Scholar

[12] K. Nagamine, T. Honma and T. Komatsuw: J. Amer. Chem. Soc. Vol. 91 (2008), p.3920

Google Scholar

[13] Y. N. Song, P. Y. Zavalij and M. S. Whittingham: J. Electrochem. Soc. Vol. 152 (2005), p.A721

Google Scholar