Electrochemical Behavior of Promethazine Hydrochloride and its Interaction with Bovine Serum Albumin

Article Preview

Abstract:

In this paper, the electrochemical behavior of promethazine hydrochloride (PMT) and its interaction with bovine serum albumin (BSA) were studied by means of cyclic voltammetry. In pH 6.5 Tris-HCl buffer solution, PMT exhibits a pair of reversible peaks and an irreversible oxidation peak at a bare gold electrode. The electrode reactions are the process controlled by adsorption. The results of cyclic voltammetry suggest that a BSA-PMT complex is formed, and this complex is not electroactive. The absorption spectra confirm the binding PMT to BSA. The binding number m and the binding constant β of BSA binding to PMT are 2.10 and 7.43×105 L/mol, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

450-453

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Zhou, Y. Z. Liang, and P. Wang: J. Mol. Struct. Vol. 872 (2008), p.190

Google Scholar

[2] J. H. Tang, F. Luan, and X. G. Chen: Bioorgan. Med. Chem. Vol. 14 (2006), p.3210

Google Scholar

[3] K. S. Ghosh, S. Sen, B. K. Sahoo, and S. Dasgupta: Biopolymers Vol. 91 (2009), p.737

Google Scholar

[4] A. M. Idris, F. N. Assubaie, and S. M. Sultan: Microchem. J. Vol. 83 (2006), p.7

Google Scholar

[5] F. W. P. Ribeiro, A. S. Cardoso, R. R. Portela, J. E. S. Lima, S. A. S. Machado, P. D. Lima-Neto, D. D. Souza, and A. N. Correia: Electroanal. Vol. 20 (2008), p. (2031)

Google Scholar

[6] L. L. He, X. Wang, B. Liu, J. Wang, and Y. G. Sun: J. Solution Chem. Vol. 39 (2010), p.654

Google Scholar

[7] L. L. He, X. Wang, B. Liu, J. Wang, Y. G. Sun, E. J. Gao, and S. K. Xu: J. Lumin. Vol. 131 (2011), p.285

Google Scholar

[8] F. Mohammadi, A. K. Bordbar, A. Divsalar, K. Mohammadi, and A. A. Saboury: Protein J. Vol. 28 (2009), p.189

Google Scholar

[9] M. G. Wen, X. B. Zhang, J. N. Tian, S. H. Ni, H. D. Bian, Y. L. Huang, and H. Liang: J. Solution Chem. Vol. 38 (2009), p.391.

Google Scholar

[10] E. G. Ferrer, A. Bosch, O. Yantorno, and E. J. Baran: Bioorgan. Med. Chem. Vol. 16 (2008), p.3878

Google Scholar

[11] H. X. Luo, Y. Du, and Z. X. Guo: Bioelectrochemistry Vol. 74 (2009), p.232

Google Scholar

[12] A. C. Fick, and U. M. Reinscheid: J. Pharm. Biomed. Anal. Vol. 41 (2006), p.1025

Google Scholar

[13] B. Blankert, H. Hayen, S. M. van Leeuwen, U. Karst, E. Bodoki, S. Lotrean, R. Sandulescu, N. Mora Diez, O. Dominguez, J. Arcos and J.-M. Kauffmann: Electroanal. Vol. 17 (2005), p.1501

DOI: 10.1002/elan.200403253

Google Scholar

[14] Y. N. Ni, X. Zhang, and S. Kokot: Spectrochim. Acta A Vol. 71 (2009), p.1865

Google Scholar

[15] F. Qu, N. Q. Li, and Y. Y. Jiang: Talanta Vol. 45 (1998), p.787

Google Scholar