Comparison Study of Amino-Functionalized and Mercaptopropyl-Functionalized Mesoporous Silica SBA-15

Article Preview

Abstract:

The capability for the adsorption of Cu (II) ion with mesoporous material SBA-15, amino-functionalized SBA-15 and mercaptopropyl-functionalized SBA-15 was investigated. XRD, FT-IR and FESEM were used for characterizing the structure and surface properties of adsorbent prepared. Effects of initial concentrations and pH on adsorption process were studied. Amino-functionalized SBA-15 was found to show the highest percentage removal of Cu (II) ion from aqueous solution compared to mercaptopropyl-functionalized SBA-15. Adsorption isothermal model was also examined. Langmuir isothermal model was found to be better fitted with adsorption process compared to Freundlich isotherm model.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

657-660

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Yang, R. Xu, X. Xue, F. Li, G. Li., Journal of Hazardous Materials, 152 (2008), 690–698.

Google Scholar

[2] J. Aguado, J. M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, Journal of Hazardous Materials, 163, (2009), 213–221.

DOI: 10.1016/j.jhazmat.2008.06.080

Google Scholar

[3] Y.-S. Jun, Y. S. Huh, H.S. Park, A. Thomas, S. J. Jeon, E. Z. L., H. J. Won, W. H. Hong, S. Y. Lee, Y. K. Hong, J. Phys. Chem. C, 111, (2007), 13076-13086.

Google Scholar

[4] A. Shahbazi, H. Younesi, A. Badiei, Chemical Engineering Journal, 168, (2011), 505-518.

Google Scholar

[5] M. Barczak, E. Skwarek, W. Janusz, A. Da˛browski, S. Pikus, Applied Surface Science, 256, (2010), 5370–5375.

DOI: 10.1016/j.apsusc.2009.12.082

Google Scholar

[6] K. Mehrani, A. Mehrani, M. M. Amini, O. Sadeghi, N. Tavassoli, Microchim Acta, 173, (2011), 521–527.

DOI: 10.1007/s00604-011-0590-7

Google Scholar

[7] A. Heidari, H. Younesi, Z. Mehraban, Chemical Engineering Journal, 153, (2009), 70–79.

Google Scholar

[8] M. Algarra, M. V. Jiménez, E. Rodríguez-Castellón, A. Jiménez-López, J. Jiménez-Jiménez, Chemosphere, 59, (2005), 779–786.

DOI: 10.1016/j.chemosphere.2004.11.023

Google Scholar

[9] L. Bois, A. Bonhommé, A. Ribes, B. Pais, G. Raffin, F. Tessier, Colloids and Surfaces A: Physicochem. Eng. Aspects, 221, (2003), 221-230.

DOI: 10.1016/s0927-7757(03)00138-9

Google Scholar

[10] M. Mureseanu, A. Reiss, I. Stefanescu, E. David, V. Parvulescu, G. Renard, V. Hulea, Chemosphere, 73, (2008), 1499–1504.

DOI: 10.1016/j.chemosphere.2008.07.039

Google Scholar

[11] A. M. Burke, J. P. Hanrahan, D. A. Healy, J. R. Sodeau, J. D. Holmes, M. A. Morris, Journal of Hazardous Materials, 164, (2009), 229–234.

DOI: 10.1016/j.jhazmat.2008.07.146

Google Scholar

[12] M. Kruk, M. Jaroniec, Chem. Mater., 12, (2000), 1961-1968.

Google Scholar

[13] J. Aguado, J. M. Arsuaga, A. Arencibia, Ind. Eng. Chem. Res., 44, (2005), 3665-3671.

Google Scholar

[14] D. Zhao, J. Sun, Q. Li, and G. D. Stucky, Chem. Mater., 12, (2000), 275-279.

Google Scholar