Effects of Thermal Exposure on the Mechanical Properties and Microstructure Stability of an Al-Cu-Mg-Ag Alloy

Article Preview

Abstract:

Mechanical properties and microstructural evolution of an Al-Cu-Mg-Ag alloy during thermal exposure at elevated temperature were characterized by means of tensile tests, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile test results suggested that tensile strength ( ) and yield strength ( ) reduced with both increasing exposure time and temperature. Correspondingly elongation of samples increased steadily with increasing exposure time and temperature, which resulted in ductile fracture. TEM results suggested the reduction of mechanical property of samples was attributed to coarsening and reduction in amount of dominant strengthening phase-Ω phase during thermal exposure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

671-681

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. J. Polmear, T. Sato, S. Kumai, T. Kobayshi, Y.Murakami, The Japan Inst. of Light Metals ICAA6 (1998) 75-86.

Google Scholar

[2] S.P. Ringer, K. Hono, Mater. Characterization 44 (2000) 101-131.

Google Scholar

[3] B.C. Muddle, I. J. Polmear, Acta matell. 37 (1994) 777-789.

Google Scholar

[4] S. P. Ringer, W. Yeung, B. C. Muddle, I. J. Polmear, Acta Metallurgica et Materialia 42 (1994) 1715.

DOI: 10.1016/0956-7151(94)90381-6

Google Scholar

[5] J. Placido, Materials Research, 8 (2005) 409-415.

Google Scholar

[6] J. H. Auld, Mater. Sci. Tech. 2 (1986) 784-787.

Google Scholar

[7] S. Kerry, V. D. Scot, Metal Sci. 18 (1984) 289.

Google Scholar

[8] K. M.Knowles, W. M. Stobbs, Acta Crystallographica, Section B (Structural Science) B44 (1988) 207-227.

Google Scholar

[9] A. Grag, J. M. Howe, Acta metall. 39 (1991) 1939-.

Google Scholar

[10] V. V.Teleshov, E. Y. Kaputkin, A. P. Golovleva, N. P. Kosmacheva., Metal Science and Heat Treatment 47 (2005) 139-144.

Google Scholar

[11] K.Zhang, S. L. Dai, M. Huang, M. G. Yan, Journal of Materials Engineering 53 (2007) 15-19.

Google Scholar

[12] S. P. Ringer, T. Sakurai, I. J. Polmear, Acta Materialia 45 (1997) 3731.

Google Scholar

[13] K. Raviprasad, C. R. Hutchinson, T. Sakurai, S. P. Ringer, Acta Materialia 51 (2003) 5037.

Google Scholar

[14] S. P. Ringer, K. Hono, I. J. Polmear, T. Sakurai, Acta Materialia 44 (1996) 1883.

Google Scholar

[15] Q. Li, R. N. Shenoy, Journal of Materials Science 32 (1997) 3401.

Google Scholar

[16] S. P. Ringer, K. Hono, I. J. Polmear, T. Sakurai, Applied Surface Science 94-95 (1996) 253.

Google Scholar

[17] L. Reich, M. Murayama, K. Hono, Acta Materialia 46 (1998) 6053.

Google Scholar

[18] S. C. Wang, M. J. Starink, N. Gao, Scripta Materialia 54 (2006) 287.

Google Scholar