Effect of O2 Flow Rate on the Morphological and Optical Properties of ZnO Nanocrystals

Article Preview

Abstract:

The morphological and optical properties of ZnO nanocrystals prepared by thermal evaporation of Zn powders were studied at both upstream and downstream under different O2 flow rates. The morphological evolution was observed by scanning electron microscopy. With O2 flow rates changing from 0.25 sccm to 1 sccm, the caps of the ZnO nanonails become bigger and the stems gradually disappear at upstream, and the diameters at the top of ZnO nanorods become thicker and the length become longer at downstream. Room temperature PL study shows that UV emission is relatively enhanced with increasing O2 flow rates. Computational fluid dynamics simulation was performed, which indicates that the morphological evolution of the ZnO structures results from the competition between the axial growth and the radial growth based on different O2 and Zn vapor partial pressure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

70-75

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. L. Wang: J. Phys.: Condens. Matter Vol. 16 (2004), p. R829.

Google Scholar

[2] Z. L. Wang: Appl. Phys. A Vol. 88 (2007), p.7.

Google Scholar

[3] M. Ohyama, H. Kouzuka and T. Yoko: Thin Solid Films Vol. 306 (1997), p.78.

Google Scholar

[4] B. Liu and H. C. Zeng: J. Am. Chem. Soc. Vol. 125 (2003), p.4430.

Google Scholar

[5] Y.Q. Bie, Z. M. Liao, H. J. Xu, X. Z. Zhang, X. D. Shan and D. P. Yu: Appl. Phys. A Vol. 98 (2010), p.491.

Google Scholar

[6] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H.J. Choi: Adv. Funct. Mater. Vol. 12 (2002), p.323.

DOI: 10.1002/1616-3028(20020517)12:5<323::aid-adfm323>3.0.co;2-g

Google Scholar

[7] A. Umar and Y. B. Hahn: Cryst. Growth Des. Vol. 8 (2008), p.2741.

Google Scholar

[8] C. Li, G. Fang, N. Liu, J. Li, L. Liao, F. Su, G. Li, X. Wu and X. Zhao: J. Phys. Chem. C Vol. 111 (2007), p.12566.

Google Scholar

[9] K. Al-Azri, R. M. Nor, Y. M. Amin and M. S. Al-Ruqeishi: Appl. Surf. Sci. Vol. 256 (2010), p.5957.

Google Scholar

[10] Q. Wei, G. Meng, X. An, Y. Hao and L. Zhang: Nanotechnology Vol. 16 (2005), p.2561.

Google Scholar

[11] X. Han, G. Wang, J. Jie, W. C. H. Choy, Y. Luo, T. I. Yuk and J. G. Hou: J. Phys.Chem. B. Vol. 109 (2005), p.2733.

Google Scholar

[12] D. Fan, R. Zhang and X. Wang: Physica E. Vol. 42 (2010), p.2081.

Google Scholar

[13] Y. Fang, Y. Wang, Y. Wan, Z. Wang and J. Sha: J. Phys.Chem. C. Vol. 114 (2010), p.12469.

Google Scholar

[14] L. C. Chao, M. Y. Hsieh and S. H. Yang: Appl. Surf. Sci. Vol. 254(2008), p.7464.

Google Scholar

[15] Z. Chen, N. Wu, Z. Shan, M. Zhao, S. Li, C. B. Jiang, M. Chyu and S. X. Mao: Scripta Mater.Vol. 52 (2005), p.63.

Google Scholar

[16] Y. J. Tian, Y. F. Chen and M. Wang, in: International Conference on Nanoscience and Technology, China, 2007.

Google Scholar

[17] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang and S. Q. Feng: Appl. Phys. Lett. Vol. 78 (2001), p.407.

Google Scholar

[18] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang: Adv. Mater. Vol. 13 (2001), pp.113-116.

Google Scholar

[19] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt: Appl. Phys. Lett. Vol. 68 (1996), p.403.

Google Scholar

[20] A. F. Kohan, G. Ceder, D. Morgan and C. G. Van de Walle: Phys. Rev. B Vol. 61 (2000), p.15019.

Google Scholar

[21] B. Lin, Z. Fu and Y. Jia: Appl. Phys. Lett. Vol. 79 (2001), p.943.

Google Scholar