Synthesis and Characterization of Small Crystals NaY Zeolite with High Silicon

Article Preview

Abstract:

Small crystals NaY zeolite with high silicon was successfully synthesized via a two-stage temperature crystallization program, without adding any organic additives. While the effect of low temperature crystallization time and the alkalinity on the crystal size and SiO2/Al2O3 ratio of NaY zeolite were investigated. The as-synthesized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FT-IR) spectroscopy, N2 adsorption, 29Si MAS NMR and thermogravimetric TG measurements. NaY zeolite, with crystal size about 100 nm and SiO2/Al2O3 ratio about 5.3, is obtained. It possesses high surface area and some amount of mecropores, and the decomposition temperature is higher than 1000 °C. The crystal size and SiO2/Al2O3 ratio of as-synthesized NaY zeolite depend on low temperature crystallization time and the alkalinity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

81-88

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. C. Larsen: J Phys Chem C. 111 (2007), p.18464

Google Scholar

[2] L. Tosheva and V. P. Valtchev: Chem Mater. 17 (2005), p.2494

Google Scholar

[3] G. S. Zhu, S. L. Qiu, Y. Sakamoto and H. S. Xiao: Chem Mater. 10 (1998), p.1483

Google Scholar

[4] B. Z. Zhan, M. A. White and M. Lumsden: Chem Mater. 14 (2002), p.3636

Google Scholar

[5] L. Y. Hu, Z. K. Zhang and S. J. Xie: Catalysis Communications. 10 (2009), p.900

Google Scholar

[6] S. G. Bao, G. Z. Liu and X. W. Zhang: Ind Eng Chem Res. 49 (2010), p.3972

Google Scholar

[7] L. H. Ding, Y. Zheng and Y. Yang: Applied Catalysis A: General. 353 (2009), p.17

Google Scholar

[8] L. Sun, X. S. Wang, J. C. Li and A. Ma: Reac Kinet Mech Cat. 102 (2011), p.235

Google Scholar

[9] Y. Huang, K. Wang and D. H. Dong: Microporous and Mesoporous Material. 127 (2010), p.167

Google Scholar

[10] L. Huang, Z. Wang and J. Sun: J Am Chem Soc. 122 (2000), p.3530

Google Scholar

[11] Y. M. Fang, H. Y. Hu and G. H. Chen: Chem Mater. 20 (2008), p.1670

Google Scholar

[12] J. Gu, Y. J. Wu and J. Wang: J Mater Sci. 44 (2009), p.3777

Google Scholar

[13] E. E. McLeary, J. C. Jansen and F. Kapteijn: Microporous Mesoporous Mater. 90 (2006), p.198

Google Scholar

[14] M. L. Lind, A. K. Ghosh and A. Jawor: Langmuir. 25 (2009), p.10139

Google Scholar

[15] B. A. Holmberg, H. Wang and Y. Yan: Microporous Mesoporous Mater. 74 (2004), p.189

Google Scholar

[16] M. I. Levinbuka, M. L. Pavlovb and M. L. Kustovc: Applied Catalysis A: General. 172 (1998), p.177

Google Scholar

[17] Q. H. Li, D. Creaser and J. Sterte: Chem Mater. 14 (2002), p.1319

Google Scholar

[18] L. Itani, Y. Liu and W. P. Zhang: J AM CHEM SOC. 131 (2009), 10127

Google Scholar

[19] S. S. Hayrapetyan and H. G. Khachatryan: Microporous Mesoporous Mater. 78 (2005), p.151

Google Scholar

[20] B. Bayati, A. A. Babaluo and R. Karimi: Journal of the European Ceramic Society. 28 (2008), p.2653

Google Scholar

[21] R. M. Mohamed, O. A. Fouad and A. A. Ismail: Materials Letters. 59 (2005), p.3441

Google Scholar

[22] Y, Cheng, L. J. Wang, J. S. Li and X. Y. Sun. Mater Lett. 59 (2005), p.3427

Google Scholar

[23] S. D. Kim, S. H. Noh, K. H. Seong and W. J. Kim: Microporous Mesoporous Mater. 72 (2004), p.185

Google Scholar

[24] B. A. Holmberg, H. T. Wang and J. M. Norbeck: Microporous Mesoporous Mater. 59 (2003), p.13

Google Scholar

[25] T. Chatelain, J. Patarin and M. Soulard: Zeolites. 15 (1995), p.90

Google Scholar

[26] F. Delprato, L. Delmotte and J. L. Guth: Zeolties. 10 (1990), p.546

Google Scholar

[27] Y. C. Kim, J. Y. Jeong and J. Y. Hwang: J Porous Mater. 16 (2009), p.299

Google Scholar

[28] H. J. Koroglu, A. Sarıoglan and M. Tatlıer: Journal of Crystal Growth. 241 (2002), p.481

Google Scholar

[29] D. W. Breck: Zeolite molecular sieves: structure, chemistry, and use. New York, 1974, p.94

Google Scholar

[30] C. A. Fyfe, Y. Feng and H. Grondey: J Chem Rev. 91 (1991), p.1525

Google Scholar

[31] M, Kruk and M. Jaroniec: Chem Mater. 13 (2001), p.3169

Google Scholar