Wettability and Interfacial Characteristic of Sn-Ag-Cu Solder on Ni Substrates at Elevated Temperatures

Article Preview

Abstract:

Wettability and interfacial characteristic of the Sn-3.0Ag-0.5Cu/Ni system are investigated by sessile drop method at the temperature range of 503~673K. The reactive wetting processes demonstrate that: contact angles between the solder and Ni substrate decrease as exponential decay and the equilibrium contact angles decrease monotonously with the temperature increasing. Triple-line mobility is enhanced as the temperature increases. Interface of the Sn-3.0Ag-0.5Cu /Ni interface are identified by EPMA and EDS analysis as (Cu,Ni)6Sn5 adjacent to the solder and Ni3Sn4 adjacent to the Ni substrate, respectively. Cu is condensed at the interface, the composition of (Cu,Ni)6Sn5 is (23.16~23.46)Ni- (36.56~37.52) Cu-(39.02~40.27)Sn (atom %). The formation of the (Cu,Ni)6Sn5 IMC was known to greatly improve the reliability of the solder joints in integrated circuits.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

703-708

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Abtew, G. Selvaduray, Mater. Sci. Eng., R, 27, (2000),95

Google Scholar

[2] G. Kumar, K. Prabhu, Adv. Colloid Interface Sci. 133(2), (2007),61.

Google Scholar

[3] Z. Yuan, W. Huang, K. Mukai, Appl. Phys. A: Mater. Sci. Process. 78(4), (2004),617

Google Scholar

[4] Z. Moser, W. Gasior, J. Pstrus, A. Debski, Int. J. Thermophys. 29(6), (2008),1974.

Google Scholar

[5] J. Wang, L. Zhang, H. Liu, L. Liu, Z. Jin, J. Alloys Compd. 455(1-2), (2008),159.

Google Scholar

[6] K. Nogita, T. Nishimura, Scr. Mater. 59, (2008),191.

Google Scholar

[7] W. Feng, C. Wang, M. Morinaga, J. Electron. Mater. 31(3), (2002),185.

Google Scholar

[8] M. Rizvi, Y. Chan, C. Bailey, H. Lu, M. Islam, B. Wu, J. Electron. Mater. 34(8), (2005),1115.

Google Scholar

[9] M. Cho, S. Kang, D. Shih, H. Lee, J. Electron. Mater. 36(11), (2007),1501.

Google Scholar

[10] C. H. Wang, H. T. Shen, Intermetallics. 1 (2009),113.

Google Scholar

[11] K. Kim, S. Huh, K. Suganuma, J. Alloys Compd. 352, (2003), 226.

Google Scholar

[12] M. Kitajima, T. Shono, Microelectron. Reliab. 45, (2005),1208.

Google Scholar

[13] M. Arenas, V. Acoff, J. Electron. Mater. 33(12), (2004),1452.

Google Scholar

[14] J. Yoon, Y. Lee, D. Kim, H. Kang, S. Suh, C. Yang, C. Lee, J. Jung, C. Yoo, S. Jung, J Alloys Compd. 381(1-2), (2004), 151.

Google Scholar

[15] K. Landry, N. Eustathopoulos, Acta Mater. 44(10), (1996),3923.

Google Scholar

[16] J. Lee, S. Chen, H. Chang, C. Chen, J. Electron. Mater. 32(3), (2003),117 .

Google Scholar

[17] S. Amore, E. Ricci, G. Borzone, R. Novakovic, Mater. Sci. Eng., A, 495, (2008),108.

Google Scholar

[18] Z. Yuan, K. Mukai, K. Takagi, M. Ohtaka, W. Huang, Q. Liu, J. Colloid Interface Sci. 254(2), (2002),338.

Google Scholar

[19] Z. Yuan, K. Mukai, J. Colloid Interface Sci. 270(1), (2004), 140.

Google Scholar

[20] T. Kim, J. Lee, Y. Kim, J.-M. Kim, Z. Yuan, Mater. Trans. 50(11), (2009),2695.

Google Scholar

[21] N. Eustathopoulos, M. G. Nicholas, B. Drevet, Wettability at High Temperatures. Pergamon: British, 1999.

Google Scholar

[22] C. Cheng, J. Zhao, Y. Xu, Mater. Lett. 63(17), (2009),1478.

Google Scholar

[23] C. Yu, J. Liu, H. Lu, P. Li, J. Chen, Intermetallics. 15, (2007),1471.

Google Scholar