Effects of Synthesis Methods on the Microstructure and Properties of Perovskite-Type SrFeCoO3-δ Oxides

Article Preview

Abstract:

The microstructure and properties of the perovskite-type SrFeCoO3-δ (SFC) oxides synthesized by different methods were analyzed in detail in the paper. The oxide powders were synthesized by the citrate method (CM) and solid state reaction (SSR). X-ray diffraction (XRD) results reveal that the main crystal structure of the SFC powders is cubic structure SrFe0.5Co0.5O3. Scanning electron microscopy (SEM) observation shows that the two kinds of powders have different grain morphologies and microstructure. Thermal gravimetric analysis and differential scanning calorimeters (TGA/DSC) results indicate that the composition loss and phase transition of the powders are related to the synthesis methods. The SFC powders synthesized by CM method show a more weight loss of various compositions than that synthesized by SSR method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

726-730

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.Q. Deng, W.S. Yang, W. Liu, et al.: J. Solid State Chem. Vol. 179 (2006), p.362.

Google Scholar

[2] Z.H. Yang, Y.S. Lin, Y. Zeng: Ind. Eng. Chem. Res. Vol. 41 (2002), p.2775.

Google Scholar

[3] Z.H. Yang, Y.S. Lin: Ind. Eng. Chem. Res. Vol. 42 (2003), p.4376.

Google Scholar

[4] Q. Yang, Y.S. Lin: Sep. Purif. Tech. Vol. 49 (2006), p.27.

Google Scholar

[5] U. Balachandran, J.T. Dusek, R.L. Mieville: Appl. Catal. A Vol. 133 (1995), p.19.

Google Scholar

[6] J.B. Liu, A.C. Co, S. Paulson, et al.: Solis State Ionics Vol. 177 (2006), p.377.

Google Scholar

[7] Y.D. Zhen, S.P. Jiang: J. Power Sources Vol. 180 (2008), p.695.

Google Scholar

[8] K. Zhang, L.Y. Yang, D. Ponnusamy, et al.: J. Mater. Sci. Vol. 34 (1999), p.1367.

Google Scholar

[9] X.W. Qi, Y.S. Lin, S.L. Swartz: Ind. Eng. Chem. Res. Vol. 39 (2000), p.646.

Google Scholar

[10] X.L. Cui, Y. Liu: Chem. Eng. J. Vol. 78 (2000), p.206.

Google Scholar

[11] V.V. Kharton, E.N. Naumovich, A.V. Kovalevsky, et al.: Solid State Ionics Vol. 138 (2000), p.135.

Google Scholar

[12] L. Tan, X.H. Gu, L. Yang, et al.: J. Membr. Sci. Vol. 212 (2003), p.157.

Google Scholar

[13] F.B. Noronha, L.V. Mattos, H.P. Souza, et al.: Mater. Res. Vol. 7 (2004), p.319.

Google Scholar

[14] E. Campagnoli, A. Tavares, L. Fabbrini, et al.: Appl. Catal. B Vol. 55 (2005), p.133.

Google Scholar

[15] G.K. Zhang, Y. Liu, X. Yang, et al.: Mater. Chem. Phys. Vol. 99 (2006), p.88.

Google Scholar

[16] C.C. Hu, H.H. Teng: Appl. Catal. A Vol. 331 (2007), p.44.

Google Scholar

[17] Q.H. Yin, J. Kniep, Y.S. Lin: Chem. Eng. Sci. Vol. 63 (2008), p.2211.

Google Scholar

[18] Y. Teraoka, M. Yashimatsu, N. Yamazoe, et al.: Chem. Lett. Vol. 13 (1984), p.893.

Google Scholar

[19] Y. Zeng, Y.S. Lin: J. Mater. Sci. Vol. 36 (2001), p.1271.

Google Scholar

[20] Z.H. Yang, Y.S. Lin: Solid State Ionics Vol. 176 (2005), p.89.

Google Scholar