Synthesis and Properties of Nitrogen-Doped Mesoporous Carbon Materials Obtained by Templating of SBA-15 with Melamine-Formaldehyde Resin

Article Preview

Abstract:

Nitrogen-doped mesoporous carbon materials have been synthesized by using melamine-formaldehyde resin as carbon precursor and SBA-15 as a removable template. The structure of the materials was investigated by X-ray diffraction, BET specific surface area analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. X-ray and BET studies confirmed that a pore nanostructure is inherited from the silica templates. Fourier transform infrared spectroscopy analysis showed N atoms are strongly bonded in the carbon structure in heterocycles or nitrile functions. These mesoporous nitrogen-doped carbon materials exhibits textural properties with BET surface areas ranging between 400 and 600 m2/g and uniform pore size(3.9 nm). The mechanism of carbonization process is studied by thermogravimetric analysis. The ratio of melamine/formaldehyde plays an important role during the carbonization process for the surface areas and textural properties, and element analysis reveals that the nitrogen content of the mesoporous carbon materials is as high as 10wt%.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 554-556)

Pages:

778-782

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Halama, B. Szubzda, G. Pasciak: Electrochimica Acta Vol. 55, (2010), p.7501.

Google Scholar

[2] Y. Wan, X. Cui and Z. Wen: J. Hazard Mater, Vol. 198, (2011), p.216.

Google Scholar

[3] N.D. Kima, W.Y. Kima, J.B. Joo, S. Oh, P. Kimb, Y.H. Kim and J.H. Yi: J. Power Sources Vol.180 (2008), p.671.

Google Scholar

[4] E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-Guterl and F. Beguin: Electrochim. Acta Vol.51 (2006), p.2209.

DOI: 10.1016/j.electacta.2005.04.080

Google Scholar

[5] D. Hulicova, M. Kodama and H. Hatori: Chem. Mater Vol.18 (2006), p.2318.

Google Scholar

[6] C.P. Ewels, M. Glerup and J. Nanosci: Nanotechnol. Vol.5(2005), p.1345.

Google Scholar

[7] E.G. Wang, J. Mater. Res Vol.21 (2006), p.2767.

Google Scholar

[8] Y. Shao, J. Sui, G. Yin and Y. Gao: Applied Catalysis B: Environmental Vol. 90 (2008),p.89–99

Google Scholar

[9] Z. Yang, Y. Xia, X. Sun and R. Mokaya: J. Phys. Chem. B Vol.110 (2006), p.18424.

Google Scholar

[10] H. Kim, J.C. Jung, D.R. Park, S.-H. Baeck and I.K. Song: Appl. Catal. Vol. 320 (2007), p.159.

Google Scholar

[11] Y. Xia and R. Mokaya: Adv. Mater. Vol.16 (2004), p.1553.

Google Scholar

[12] A. Lu, A. Kiefer, W. Schmidt and F. Schüth: Chem. Mater Vol. 16 (2004), p.100.

Google Scholar

[13] D. Hulicova, M. Kodama and H. Hatori: Chem. Mater Vol. 18 (2006), p.2318.

Google Scholar

[14] W.R. Li, D.H. Chen, Z. Li, Y.F. Shi, Y. Wan, J.J. Huang, J.J. Yang, D.Y. Zhao and Z.Y. Jiang: Electrochem Commun Vol. 9 (2007), p.569.

Google Scholar

[15] K. Kierzek, E. Frackowiak, G. Lota, G. Gryglewicz and J. Machnikowski: Electrochim. Acta Vol. 49 (2004), p.515.

DOI: 10.1016/j.electacta.2003.08.026

Google Scholar

[16] H.S. Zhou, S.M. Zhu, M. Hibino and I. Honma: J. Power Sources Vol. 122 (2003), p.219.

Google Scholar

[17] X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, K. Domen and M. Antonietti: Nat. Mater. Vol. 8 (2009), p.76.

Google Scholar

[18] J.Y. Zhang , Y.H. Deng, J. Wei, Z.K. Sun, D. Gu , H. Bongard, C. Liu, H.H. Wu, B. Tu, F. Schuth and D.Y. Zhao: Chem. Mater. Vol. 21 (2009), p.3996.

Google Scholar

[19] P. F. Fulvio. C. Liang, S. Dai, and M. Jaroniec: Eur. J. Inorg. Chem. Vol. 2009 (2009), p.605

Google Scholar

[20] X.Q. Wang, Q. Zhu, S.M. Mahurin , C.D. Liang and S. Dai: Carbon Vol. 48 (2010), p.557.

Google Scholar

[21] T. Roussel, A. Didion, R.-M. Pellenq, R. Gadiou, C. Bichara and C. VixGuterl: J. Phys. Chem. C Vol. 111 (2007), p.15863.

Google Scholar

[22] A.Galarneau, N.Cambon, F.D. Renzo, R. Ryoo, M. Choi and F. Fajula: New J. Chem Vol. 27(2003), p.73.

Google Scholar

[23] A. Vinu, K. Ariga, T. Mori, T. Nakanishi, S. Hishita, D. Golberg and Y. Bando: Adv. Mater Vol.17 (2005), p.1648.

DOI: 10.1002/adma.200401643

Google Scholar

[24] P.J. Larkin, M.P. Makowski, N.B. Colthup: Spectrochim Acta A Vol. 112 (1999), p.1011.

Google Scholar

[25] Y. Qiu and L. Gao: Chem. Commun 2003, p.2378.

Google Scholar