Electrical Conductivity and Phase Transition of Solid Oxide Fuel Cell Electrolyte La2Mo2-xTixO9-δ Ceramics

Article Preview

Abstract:

A novel series of ceramic samples La2Mo2-xTixO9-δ (x = 0, 0.025, 0.05, 0.075) were prepared by solid-state reaction method. Their structures and phase transitions were studied by XRD, DSC and CTE. Their Electrical conductivities and oxygen ion transport numbers were measured by AC impedance spectroscopy at 773~1073 K and EMF at 673~1073 K, respectively. Results showed that even when x=0.075, the sample was almost pure oxygen ion conductor under the oxygen partial pressure gradient of 1.0 atm/0.21 atm, and though all the Ti-doped samples still underwent α/β structure transition, no abrupt change in the electrical conductivity was observed accompanying with the transition. They exhibited considerably higher electrical conductivity than La2Mo2O9, especially at 773~873 K and the conductivity increased with increasing x value. The value of conductivity for La2Mo1.925Ti0.075O9-δ reached 8.5×10-3 S•cm-1 at 773 K and 0.08 S•cm-1 at 1,073 K.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

1223-1227

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant: Nature, 404 (2000), p.856.

DOI: 10.1038/35009069

Google Scholar

[2] A. Selmi, C. Galven,  G. Corbel and P. Lacorre: Dalton Trans., 39 (2010), p.93.

DOI: 10.1039/b915080c

Google Scholar

[3] Santanu Basu, Himadri S. Maiti: J Solid State Electrochem. 14 (2010), p.1021.

Google Scholar

[4] Ania Selmi, G. Corbel, S.Kojikian, et,al: Eur.J.Inorg. Chem.11 (2008), p.1813

Google Scholar

[5] M. Ali (Basu), B. N. Wani and S. R. Bharadwaj*, Journal of Thermal Analysis and Calorimetry, 96 (2009) 2, 463–468

Google Scholar

[6] Jianhong Xu, Jinling Yin, Xiaowen Wang, Hongtao Wang, Guilin Ma*: Solid State Ionics 189 (2011), p.33

Google Scholar

[7] C. Tealdi, G. Chiodelli, L. Malavasi, G. Flor: J. Mater. Chem., 14 (2004), p.3553.

Google Scholar

[8] S. Georges, O. Bohnké, F. Goutenoire, Y. Laligant, J. Fouletier, P. Lacorre: Solid State Ionics 177 (2006), p.1715.

DOI: 10.1016/j.ssi.2006.02.036

Google Scholar

[9] D. Marrero-Lopez, J. Pena-Martinez, D. Perez-Coll, P. Nunez: J. Alloys Compd. 422 (2006), p.249.

Google Scholar

[10] S. Georges, F. Goutenoire, P. Lacorre, M.C. Steil: J. Eur. Ceram. Soc., 25 (2005), p.3619.

Google Scholar

[11] D. Marrero-Lopez, J. Canales-Vazquez, et,al: Electrochim. Acta., 50 (2005), p.4385.

Google Scholar

[12] G. Corbel, Y. Laligant, F. Goutenoire, E. Suard, P. Lacorre: Chem.Mater., 17 (2005),p.4678.

Google Scholar

[13] J.V. Herle, A.J. McEvoy, K.R. Thampi: J. Mater. Sci.,29 (1994),p.3691.

Google Scholar

[14] I. Kosacki, H.U. Anderson, Y. Mizutani, K. Ukai: Solid State Ionics 152/153 (2002), p.431.

Google Scholar