Influence of Final Nitriding Temperature on the Preparation and the Catalytic Performance of CoMoNx/CNTs for Ammonia Decomposition

Article Preview

Abstract:

A series of cobalt-molybdenum nitride catalysts were prepared using Co-Mo oxide precursors via temperature-programmed reaction in N2-H2 mixed gases. The catalysts were characterized by N2 physical adsorption, X-ray diffraction, temperature-programmed desorption of H2. Their catalytic performance was evaluated in the model reaction of ammonia decomposition. The influence of the final nitriding temperatures on the surface properties and the catalytic perfomance of CoMoNx/CNTs were described. The catalyst nitrided at 650°C shows the best catalytic performance. The results indicated that a suitable final nitriding temperature contributes directly to the formation of nitrides and favor the catalyst activity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

1514-1517

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.V. Choudhary, D.W. Goodman, Catal. Today. 77 (2002), p.65.

Google Scholar

[2] Chellappa A S, Fisher C M, Thomson W J. Appl Catal A, 227(2002), p.231.

Google Scholar

[3] Sorensen, R.Z., et al., Catal. Commun., Vol.6 (2005), p.229.

Google Scholar

[4] R. Metkemeijer, P. Achard, Int. J. Hydrogen Energy, 19(1994), p.535.

Google Scholar

[5] R. Metkemeijer, P. Achard, J. Power Sources,49(1994), p.271.

Google Scholar

[6] T.V. Choudhary, C. Svadinaragana, D.W. Goodman, Catal. Lett., 72(2001), p.197.

Google Scholar

[7] T.V. Choudhary, D.W. Goodman, J. Catal., 192(2000), p.316.

Google Scholar

[8] Satito, M., Anderson, R.B., J. Catal. . 63, (1980), pp.438-446.

Google Scholar

[9] G.S. Ranhotra, A.T. Bell, J.A. Reimer, J. Catal. 108(1987), p.40.

Google Scholar

[10] Kojima, R., Aika, K., Appl. Catal A: Gen.,219 (2001) , p.141.

Google Scholar

[11] Lu, C.S., Li, X.N., Zhu, Y.F., Liu, H.Z., Zhou, C.H., Chinese Chem. Lett., 15(2004), p.105.

Google Scholar

[12] Ramanathan, S., Yu, C.C., Oyama, S.T. . J. Catal., 173 (1998), p.10.

Google Scholar

[13] Traw czynski J, Appl. Catal. A, 197(2000), p.289.

Google Scholar

[14] Chu, Y. J., W, Z. B., Qi, X. Y., et al, Chin. J. Catal., 19(1998), p.559.

Google Scholar

[15] Markel, E.J., Burdick, S.E., Leaphart, M.E., I Roberts, K.L., J. Catal., 182 (1999) , p.136.

Google Scholar

[16] Liu Y. Q., Liu C. G., Que G. H., Chin. J. Catal., 21(2000), p.337.

Google Scholar

[17] M. Nagai. T. Miyao, T. Tuboi, Catal. Lett., 18(1993), p.9.

Google Scholar

[18] Volpe L, Boudart M, J. Solid State Chem., 59(1985), p.332.

Google Scholar

[19] H.C. Liu, H. Wang, J.h. Shen, et al., J. Nat. Gas. Chem., 15(2006), p.178.

Google Scholar

[20] Wise R S, Markel E J. J. Catal., 145(1999), p.344.

Google Scholar

[21] Choi J G, Curl R L, Thompson L T. J. Catal., 146(1994), p.218.

Google Scholar