P-Doped p-Type ZnΟ Films Deposited by Sputtering and Diffusing

Article Preview

Abstract:

P-doped ZnO thin films were prepared on different Si substrates by RF magnetron sputtering in Ar and O2 mixed atmosphere. The P-doped ZnO films were changed from n-type to p-type by phosphorus diffusing from the n-Si substrates with higher phosphorus concentration into the ZnO films during depositing. The crystal structure of the ZnO films was examined by X-ray diffraction and confirmed to belong to wurtzite and highly c-axis oriented primarily perpendicular to the substrate. The Hall effect measurement results show that the corresponding hole concentration and risistivity of the P-doped ZnO film was 8.982×1017 cm-3 and 1.489 Ω•cm respectively. This reveals that the P-doped ZnO thin film is really p-type behavior.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

1984-1987

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. R. Aghamalyan, R. K. Hovsepyan, S. I. Petrosyan: Journal of Contemporary Physics (Armenian Academy of Sciences) Vol. 43 (2008), p.177

Google Scholar

[2] S.J. Pearton, D.P. Norton, K. Ip, et al. : Journal of Vacuum Science & Technology B Vol. 22 (2004), p.932

Google Scholar

[3] S. J. Kang, Y. H. Joung, J. W. Han, et al. : Journal of Materials Science: Materials in Electronics Vol. 22 (2008), p.248

Google Scholar

[4] W.D. Yi, G.S. Xia, L. Gang, M. Zhao: Chin. Phys. Soc. Vol. 59 (2010), pp.3473-08

Google Scholar

[5] H.K. Choi, J.H. Park, Sang-Hun Jeong, et al. : Semicond. Sci. Technol. Vol. 24 (2009), p.105003

Google Scholar

[6] D.H. Kim, N. G. Cho, K. S. Kim, et al. : Journal of Electroceramics Vol. 22 (2009), p.82

Google Scholar

[7] J.C. Fana, Z. Xieb, Q. Wanc, et al. : Journal of Crystal Growth Vol. 307 (2007), p.66

Google Scholar

[8] M. Pan, J. Nause, V. Rengarajan, et al. : Journal of Electronic Materials Vol. 36 (2007), p.457

Google Scholar

[9] W.J. Lee, J. Kang, K.J. Chang : Phys Rev B. Vol. 73 (2006), p.024117

Google Scholar

[10] K.K. Kim, H.S. Kim, D.K. Hwang, et al. : Appl Phys Lett. Vol. 83 (2003), p.63

Google Scholar

[11] H.S. Kim, S.J. Pearton, D. P. Norton, F. Ren: J Appl. Phys. Vol. 102 (2007), p.104904

Google Scholar

[12] C.H. Park, S.B. Zhang, S.H. Wei: Phys Rev B Vol. 66 (2002), p.073202

Google Scholar

[13] S. Limpijumnong, S.B. Zhang, S.H. Wei, et al. : Phys Rev Lett. 92 (2004), p.155504

Google Scholar

[14] P. Wang, N.F. Chen, Z. G. Yin: Appl. Phys. Lett. Vol. 88 (2006), p.152102

Google Scholar

[15] J. Gao, Q. Zhao, Y. Sun, G. Li: Nanoscale Res Lett. Vol. 6 (2011), p.45

Google Scholar