Effects of Length Fluctuation on Damage Spreading in a Triangular Nanowire Array

Article Preview

Abstract:

A realistic quantum magnetic disk structure formed by a nanowire array is studied. The length fluctuation of the nanowires is described with Gaussian distributions. The magnetostatic interaction between two nanowires with different length and radius is derived. Based on that, we study the thermal stability of the nanowire array analytically and numerically by the damage spreading technique. The results show that when the magnetic cell’s spacing reduces (the storage density increases) or the nanowire length increases, damage spreading becomes difficult and the system stability is enhanced. In addition, the long-range magnetostatic interaction and the shape anisotropy make the system more stable and the nanowire length fluctuation influence is comparatively small.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

649-653

Citation:

Online since:

July 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. G. Zhu: materials today Vol. 6(2003), p.22.

Google Scholar

[2] Z. Z. Guo , K. Y. Szeto and X. J. Fu:Phys.Rev.E Vol.70(2004) , p.016105.

Google Scholar

[3] Z. Z. Guo and K. Y. Szeto: Phys.Rev.E Vol.71(2005) , p.066115.

Google Scholar

[4] A. Kaczanowski and K. Kuakowski : Microelectron. Eng. Vol.81(2005) , p.317.

Google Scholar

[5] A. Kaczanowski and K. Kuakowski : Physica B Vol.351(2004) , p.1.

Google Scholar

[6] S. A. Kauffman:J.Theor.Biol. Vol.22(1969) , p.437.

Google Scholar

[7] T. Wappler , T. Vojta and M .Schreiber:Phys.Rev.B Vol.55(1997) , p.6272.

Google Scholar

[8] Y. Kim:Phys.Rev.E Vol.64 (2001) , p.027101.

Google Scholar

[9] S .Fortunato : Physica A Vol.348(2005) , p.683.

Google Scholar

[10] N. G. F. Medeiros , A. T.C. Silva and F.G. B. Moreira:Physica A Vol.348(2005) , p.691.

Google Scholar

[11] S.Y. Chou, P. R. Krauss:J. Magn. Magn. Mater. Vol.155(1996) , p.151.

Google Scholar

[12] H. G. Shi and D. S. Xue: Chin.Phys.Lett. Vol.25(2008) , p.282.

Google Scholar

[13] Z. G. Huang ,Z.G. Chen,F. M. Zhang and Y. W. Du: Eur.Phys.J. B Vol.37 (2004) , p.177.

Google Scholar

[14] K.Yamaguchi, K. Yamada and T .Takagi :IEEE Trans. Magn. Vol.38(2002) , p.865.

Google Scholar

[15] R. Piccin, D. Laroze, M. Knobel, P. Vargas and M. V´azquez: Eur.Phys.Lett. Vol. 78(2007) , p.67004.

Google Scholar

[16] A. J. Bennett and J. M. Xu: Appl.Phys.Lett. Vol.82(2003) , p.3304.

Google Scholar

[17] D. Laroze, J. Escrig, P. Landeros and D. Altbir, M. V´azquez, P. Vargas: Nanotechnology Vol.18(2007) , p.415708.

DOI: 10.1088/0957-4484/18/41/415708

Google Scholar

[18] P. Landeros, J. Escrig, D. Altbir,D. Laroze,J. d'Albuquerque e Castro,P. Vargas:Phys. Rev. B Vol.71(2005) , p.094435.

DOI: 10.1103/physrevb.71.094435

Google Scholar

[19] J. Escrig and D. Altbir,M. Jaafar, D. Navas, A. Asenjo, and M. Vázquez:Phys. Rev. B Vol.75(2007) , p.184429.

Google Scholar

[20] Z. Z.Guo and C. H. An :Chin.Phys.Lett. Vol.25(2008) , p.4406.

Google Scholar

[21] Z. Z.Guo and X. W. Wu : Int.J. Mod.Phys. B Vol.22(2008) , p.2545.

Google Scholar

[22] F.D. Nobre, A.M. Mariz, and E.S. Sousa:Phys.Rev.Lett. Vol.69(1992) , p.13.

Google Scholar

[23] V .Skumryev , S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogues: Nature Vol.423(2003) , p.850.

DOI: 10.1038/nature01687

Google Scholar

[24] J. P. Pierce ,M. A. Torija, Z. Gai,J. R. Shi, T.C. Schulthess, G. A. Farnan, J. F. Wendelken, E. W. Plummer and J. Shan: Phys. Rev. Lett. Vol.92 (2004) , p.237201.

DOI: 10.1103/physrevlett.92.237201

Google Scholar

[25] J. Escrig , R. Lav'ln and J. L. Palma: Nanotechnology Vol. 19 (2008) , p.075713.

Google Scholar

[26] Z. Z. Guo: Adv. Mater. Res. Vol.396-398 (2012) ,p.233.

Google Scholar