Microstructure and Mechanical Properties of Horizontal Continuous Casting Al-18%Si Alloy Billets

Article Preview

Abstract:

Horizontal continuous casting (HCC) Al-18%Si alloy billets were prepared with the addition of fine-grained Al-18%Si as a master alloy. The influence of cooling conditions and this fine-grained structural materials addition on the microstructure and tensile properties were studied. The uniformity of the HCC Al-18%Si alloy billets was also analyzed. The results denote that the HCC Al-18% Si alloy billets showed finer microstructure and better mechanical properties after double cooling. Fine-grained structural material addition can effectively reduce macrosegregation and make both primary and eutectic silicon much finer. The ultimate tensile strength clearly increased with an addition of 15 percent fine-grained structural material compared to the HCC alloy with no addition of fine-grained structural material. However, a small decrease occurred after an addition of fine-grained structural material up to 30 percent.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 557-559)

Pages:

68-74

Citation:

Online since:

July 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Hekmat-Ardakan and F. Ajersch: Acta Mater. Vol. 58 (2010), p.3422

Google Scholar

[2] Y.G. Li, Y.Y. Wu, Q. Zhang and X.F. Liu: Mater. Sci. Eng. A Vol. 527 (2009), p.146

Google Scholar

[3] Y. Hao, B. Gao, G.F. Tu, S.W. Li, S.Z. Hao and C. Dong: Appl. Surf. Sci. Vol. 257 (2011), p.3913

Google Scholar

[4] B. Gao, Y. Hao, W.F. Zhuang, G.F. Tu, W.X. Shi, S.W. Li, S.Z. Hao, C. Dong andM.C. Li: Phys. Proc. Vol. 18 (2011), p.187

Google Scholar

[5] J.Y. Qin, M. Zuo, T.K. Gu and X.F. Liu: J. Alloys Comp. Vol. 492 (2010), p.525

Google Scholar

[6] T.V.S. Reddy, D.K. Dwivedi and N.K. Jain: Wear Vol. 266 (2009), p.1

Google Scholar

[7] O. Lashkari, F. Ajersch, A. Charette and X.G. Chen: Mater. Sci. Eng. A Vol. 492 (2008), p.377

Google Scholar

[8] X. F. Yu, Y. M. Zhao, X. Y. Wen and T. Zhai: Mate. Sci. Eng. A Vol. 394 (2005), p.376

Google Scholar

[9] R. Nadella, D. G. Eskin, Q. Du and L. Katgerman: Prog. Mater. Sci. Vol. 53 (2008), p.421

Google Scholar

[10] B. C. H. Venneker and L. Katgerman: J. Light Metal. Vol. 2 (2002), p.149

Google Scholar

[11] C. W. Chang, G. C. Jin, S.Y. Chen and X. D.Yue: Acta Metall. Vol. 20 (2007), p.35

Google Scholar

[12] Z. H. Zhao, J. Z. Cui, J. Dong and B. J. Zhang: J. Mater. Process. Technol. Vol. 182 (2007), p.185

Google Scholar

[13] J. Espinoza-Cuadra, P. Gallegos-Acevedo, H. Mancha-Molinar and A. Picado: Mater. Des. Vol. 31 (2010), p.343

DOI: 10.1016/j.matdes.2009.06.017

Google Scholar

[14] J. Guo, Y. Liu, P. Fan, H.X. Qu and T. Quan: J. Alloys Comp. Vol. 495 (2010), p.45

Google Scholar

[15] Q. Zhang, X.F. Liu and H.S. Dai: J. Alloys Comp. Vol. 480 (2009), p.376

Google Scholar

[16] M. Zuo, K. Jiang and X.F. Liu: J. Alloys Comp. Vol. 503 (2010), p. L26

Google Scholar

[17] X. F. Bian, X. F. Liu, J. J. Ma, Genetics of cast metals. Shandong Science & Technology Press, Jinan, pp.6-8 (1999).

Google Scholar