[1]
J. I. East Jr., Ignition and flamespreading phenomena in granular propellant gun charges, in Interior Ballistics of Guns, H. Krier, and M. Summerfield, eds., American Institute of Aeronautics and Astronautics, 1979, pp.228-245.
Google Scholar
[2]
L.-M. Chang, Ignition diagnostics of the 120-mm XM859-MP cartridge, Tech. Rep. BRL-TR-2840, U.S. Army Research Laboratory: Aberdeen Proving Ground, MD., 1987.
DOI: 10.21236/ada187867
Google Scholar
[3]
D. E. Kooker, L.-M. Chang, and S. L. Howard, Flamespreading in granular solid propellant: design of an experimen, ARL-MR-80, U.S. Army Research Laboratory: Aberdeen Proving Ground, MD., (1993)
Google Scholar
[4]
D. E. Kooker, S. L. Howard, and L.-M. Chang, Flamespreading in granular solid propellant: initial results, ARL-TR-446, U.S. Army Research Laboratory: Aberdeen Proving Ground, MD., 1994.
Google Scholar
[5]
A. L. Brant, J. W. Colburn, C. R. Ruth, and D. W. Worthington, Flamespreading Processes in Ball Powder Propellants, ARL-TR-731, U.S. Army Research Laboratory: Aberdeen Proving Ground, MD., 1995.
Google Scholar
[6]
D. E. Kooker, L.-M. Chang, and S. L. Howard, Convective ignition of a granular solid propellant bed: influence of propellant composition, in 26th symposium (international) on combustion, Volume II, The Combustion Institute, Pittsburgh, Pennsylvania, USA, (1996)
DOI: 10.1016/s0082-0784(96)80027-0
Google Scholar
[7]
S. Jaramaz, Flamespreading during Base Ignition of Propellant Charge: Theoretical and Experimental Studies, Propellants, Explosives, Pyrotechnics 22 (1997) 326-332.
DOI: 10.1002/prep.19970220606
Google Scholar
[8]
K. K. Guo, and P. Ferrara, Flame spreading and combustion behavior of gun propellants packed in high loading densities, ADA426407, U.S. Army Research Laboratory: Aberdeen Proving Ground, MD., 2004.
DOI: 10.21236/ada426407
Google Scholar
[9]
I. W. May, and A. W. Horst, Charge design considerations and their effect on pressure waves in guns, in Interior Ballistics of Guns, H. Krier, and M. Summerfield, eds., American Institute of Aeronautics and Astronautics, 1979, pp.197-227.
Google Scholar
[10]
L.-M. Chang, and J. J. Rocchio, Simulator diagnostics of the early phase ignition phenomena in a 105-mm Tank gun chamber, Tech. Rep. BRL-TR-2890, U.S. Army Ballistic Research Laboratory: Aberdeen Proving Ground, MD., 1988.
DOI: 10.21236/ada195514
Google Scholar
[11]
H. Miura, A. Matsuo, and Y. Nakamura, Three-Dimensional Simulation of Pressure Fluctuation in a Granular Solid Propellant Chamber within an Ignition Stage, Propellants Explos. Pyrotech. 36(2011) 259-267.
DOI: 10.1002/prep.201000058
Google Scholar
[12]
J. R. Schmidt, and M. J. Nusca, Progress in the Development of a Multiphase Turbulent Model of the Gas/Particle Flow in a Small-Caliber Ammunition Primer, ARL-TR-3860, U.S. Army Research Laboratory: Aberdeen Proving Ground, MD., 2006.
Google Scholar
[13]
M. J. Nusca, and S. L. Howard, Experimental and Modeling Studies of Plasma Injection by an Electrothermal Igniter Into a Solid Propellant Gun Charge, ARL-TR-3806, U.S. Army Research Laboratory: Aberdeen Proving Ground, MD., 2006.
DOI: 10.21236/ada449946
Google Scholar
[14]
M. Song, Porous medium models for the early stages in the interior ballistic cycle, ACTA Armamentarii, 31(2) (1992) 12-18.
Google Scholar
[15]
C. Fu, Z. Zhang, and W. Tan, Numerical simulation of thermal convection of a viscoelastic fluid in a porous square box heated from below, Physics of fluids, 19(2007) 104-107
DOI: 10.1063/1.2800358
Google Scholar
[16]
F. Xu, P. Sofronics, N. Aravas, and S. Meyer, Constitutive modeling of porous viscoelastic materials, European Journal of Mechanics A/solids, 26(2007) 936-955.
DOI: 10.1016/j.euromechsol.2007.05.008
Google Scholar
[17]
M. B. Allen, Numerical modelling of multiphase flow in porous media, Adv. Water Resources, 8(1985) 162-187.
DOI: 10.1016/0309-1708(85)90062-4
Google Scholar
[18]
R. E. Collins, Flow of fluids through porous material. Reinhold publishing corporation, New York, 1961.
Google Scholar
[19]
P. J. Fox, Y. Zhu, and J. P. Morris, Fundamental Research on the Mechnicals of Fluid Flow through Porous Media, Fin. Rep. ADA383619, Purdue University, West Lafayeett, IN, USA, 2000.
Google Scholar