[1]
X. Wang, A. Yoshikawa, Molecular beam epitaxy growth of GaN, AlN and InN, Progress in Crystal Growth and Characterization of Materials 48/49 (2004) 42-103.
DOI: 10.1016/j.pcrysgrow.2005.03.002
Google Scholar
[2]
A.V. Tikhonov, T.V. Malin, K.S. Zhuravlev, L. Dobos, B. Pecz, TEM study of defects in AlxGa1-xN layers with different polarity, Journal of Crystal Growth 338 (2012) 30-34.
DOI: 10.1016/j.jcrysgro.2011.10.019
Google Scholar
[3]
K.K. Abgaryan, Application of optimization methods for modeling of close packings crystal structures, Proc. of international conference Optimization and applications, (Optima–2009), Petrovac, Montenegro, pp.3-4, (2009).
Google Scholar
[4]
K.K. Abgaryan K.K., V.R. Khachaturov, Computer simulation of stable structures in crystal substances, Zh. Vychisl. Mat. Mat. Fiz. 49 (2009) 1517–1530.
Google Scholar
[5]
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-B871.
DOI: 10.1103/physrev.136.b864
Google Scholar
[6]
W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.
DOI: 10.1103/physrev.140.a1133
Google Scholar
[7]
D.W. Heerman, Computer simulation methods in theoretical physics, Springer, (1990).
Google Scholar
[8]
K.A. Fichthorn, W.H. Weinberg, Dynamical Monte Carlo simulations, J. Chem. Phys. 95 (1991) 1090-1096.
Google Scholar
[9]
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[10]
P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.
DOI: 10.1103/physrevb.50.17953
Google Scholar
[11]
R.D. King-Smith, D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47 (1993) 1651-1654.
DOI: 10.1103/physrevb.47.1651
Google Scholar
[12]
T. A. Rawdanowicz, J. Narayan, Epitaxial GaN on Si(111): Process control of SiNx interlayer formation, Appl. Phys. Let. 85 (2004) 133-135.
DOI: 10.1063/1.1771803
Google Scholar
[13]
J.P. Perdew, M. Levy, Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities, Phys. Rev. Let. 51 (1983) 1884-1887.
DOI: 10.1103/physrevlett.51.1884
Google Scholar
[14]
V. I. Anisimov, F. Aryasetiawan, A. I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method, J. Phys.: Condens. Matter 9 (1997) 767-808.
DOI: 10.1088/0953-8984/9/4/002
Google Scholar
[15]
K. Lawniczak-Jablonska, T. Suski, I. Gorczyca, N.E. Christensen, K.E. Attenkofer, R.C.C. Perera et al., Electronic states in valence and conduction bands of group-III nitrides: Experiment and theory, Phys. Rev. B 61 (2000) 16623-16632.
DOI: 10.1103/physrevb.61.16623
Google Scholar
[16]
V. Yu. Davydov, A.A. Klyuchihin, Elektronnye i kolebatelnye sostoyaniya InN i tvyordyh rastvorov InGaN, Fizika i tehnika poluprovodnikov 38 (2004) 897-936.
Google Scholar
[17]
C. Stampfl, C.G. Van de Walle, D. Vogel, P. Krüger, J. Pollman, Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials, Phys. Rev. B 61 (2000).
DOI: 10.1103/physrevb.61.r7846
Google Scholar
[18]
S. Yu. Karpov, Spontaneous polarization in III-nitride materials, Phys. Status Solidi C 7 (2010) 1841-1843.
DOI: 10.1002/pssc.200983414
Google Scholar
[19]
F. Bernardini, V. Fiorentini D. Vanderbilt, Accurate calculation of polarization-related quantities in semiconductors, Phys. Rev. B 63 (2001) 193201.
DOI: 10.1103/physrevb.63.193201
Google Scholar