Multiscale Computational Model of Nitride Semiconductor Nanostructures

Article Preview

Abstract:

Theoretical multiscale model of nitride semiconductor nanostructure is proposed. The model combines various computational methods such as density functional theory, molecular dynamics and kinetic Monte Carlo. As a first step of implementation of proposed approach ab initio calculations of structural and electronic properties of two different structures InN/Si and AlN/AlGaN/GaN heterostructures were carried out. In particular, the influence of oxygen on InN/Si adhesion energy was studied. AlN, GaN, AlxGa1-xN (x=0.33) spontaneous and piezoelectric polarizations as well as sheet carrier concentrations at GaN/AlGaN interface were calculated. Obtained value for sheet carrier concentration at GaN/AlGaN interface is close to experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

1133-1137

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Wang, A. Yoshikawa, Molecular beam epitaxy growth of GaN, AlN and InN, Progress in Crystal Growth and Characterization of Materials 48/49 (2004) 42-103.

DOI: 10.1016/j.pcrysgrow.2005.03.002

Google Scholar

[2] A.V. Tikhonov, T.V. Malin, K.S. Zhuravlev, L. Dobos, B. Pecz, TEM study of defects in AlxGa1-xN layers with different polarity, Journal of Crystal Growth 338 (2012) 30-34.

DOI: 10.1016/j.jcrysgro.2011.10.019

Google Scholar

[3] K.K. Abgaryan, Application of optimization methods for modeling of close packings crystal structures, Proc. of international conference Optimization and applications, (Optima–2009), Petrovac, Montenegro, pp.3-4, (2009).

Google Scholar

[4] K.K. Abgaryan K.K., V.R. Khachaturov, Computer simulation of stable structures in crystal substances, Zh. Vychisl. Mat. Mat. Fiz. 49 (2009) 1517–1530.

Google Scholar

[5] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864-B871.

DOI: 10.1103/physrev.136.b864

Google Scholar

[6] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133-A1138.

DOI: 10.1103/physrev.140.a1133

Google Scholar

[7] D.W. Heerman, Computer simulation methods in theoretical physics, Springer, (1990).

Google Scholar

[8] K.A. Fichthorn, W.H. Weinberg, Dynamical Monte Carlo simulations, J. Chem. Phys. 95 (1991) 1090-1096.

Google Scholar

[9] G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[10] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[11] R.D. King-Smith, D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47 (1993) 1651-1654.

DOI: 10.1103/physrevb.47.1651

Google Scholar

[12] T. A. Rawdanowicz, J. Narayan, Epitaxial GaN on Si(111): Process control of SiNx interlayer formation, Appl. Phys. Let. 85 (2004) 133-135.

DOI: 10.1063/1.1771803

Google Scholar

[13] J.P. Perdew, M. Levy, Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities, Phys. Rev. Let. 51 (1983) 1884-1887.

DOI: 10.1103/physrevlett.51.1884

Google Scholar

[14] V. I. Anisimov, F. Aryasetiawan, A. I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method, J. Phys.: Condens. Matter 9 (1997) 767-808.

DOI: 10.1088/0953-8984/9/4/002

Google Scholar

[15] K. Lawniczak-Jablonska, T. Suski, I. Gorczyca, N.E. Christensen, K.E. Attenkofer, R.C.C. Perera et al., Electronic states in valence and conduction bands of group-III nitrides: Experiment and theory, Phys. Rev. B 61 (2000) 16623-16632.

DOI: 10.1103/physrevb.61.16623

Google Scholar

[16] V. Yu. Davydov, A.A. Klyuchihin, Elektronnye i kolebatelnye sostoyaniya InN i tvyordyh rastvorov InGaN, Fizika i tehnika poluprovodnikov 38 (2004) 897-936.

Google Scholar

[17] C. Stampfl, C.G. Van de Walle, D. Vogel, P. Krüger, J. Pollman, Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials, Phys. Rev. B 61 (2000).

DOI: 10.1103/physrevb.61.r7846

Google Scholar

[18] S. Yu. Karpov, Spontaneous polarization in III-nitride materials, Phys. Status Solidi C 7 (2010) 1841-1843.

DOI: 10.1002/pssc.200983414

Google Scholar

[19] F. Bernardini, V. Fiorentini D. Vanderbilt, Accurate calculation of polarization-related quantities in semiconductors, Phys. Rev. B 63 (2001) 193201.

DOI: 10.1103/physrevb.63.193201

Google Scholar