The Reaction Scheme of Partial Oxidation of Methane to Synthesis Gas over Metallic Ni Catalyst

Article Preview

Abstract:

A metallic Ni catalyst was prepared with nickel sponge, followed by acid treatment. The reaction scheme of partial oxidation of methane to synthesis gas over the metallic Ni catalyst had been suggested and researched. For defining the logical kinetic regime, the effects of operational variables on mass and heat transport resistances were investigated. In the absence of significant mass and heat transfer resistances, high selectivities to syngas were obtained on the metallic Ni catalyst even in the low methane conversion range. With the increase of CH4/O2 ratios, the selectivities to H2 and CO on the metallic Ni catalyst also increased.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 560-561)

Pages:

309-320

Citation:

Online since:

August 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Han S, Park J, Song S, Chun K M. Int J Hydrogen Energy, 2010, 35: 8762.

Google Scholar

[2] Bell C J, Leclerc C A. Energy Fuels, 2007, 21: 3548.

Google Scholar

[3] Lanza R, Canu P, Jaras SG, Appl. Catal. A: Gen., 2010, 375: 92.

Google Scholar

[4] Hu C W, Wu J J, Zhang H L, Qin S. AIChE J., 2007, 53: 2925.

Google Scholar

[5] Choudhary T V, Choudhary V R, Angew. Chem. Int. Ed., 2008, 47: 2.

Google Scholar

[6] Williams K A, Horn R, Schmidt L D. AIChE J., 2007, 53: (2097).

Google Scholar

[7] Ryu J H, Lee K Y, Kim H J, Yang J I, Jung H. Appl. Catal., B: Environ., 2008, 80: 306.

Google Scholar

[8] Balachandran U, Dusek J T, Maiya P S, Ma B, Mieville R L, Kleefisch M S, Udovich C A. Catal. Today, 1997, 36: 265.

DOI: 10.1016/s0920-5861(96)00229-5

Google Scholar

[9] Choudhary V R, Rajput A M, Prabhakar B. J. Catal., 1993, 139: 326.

Google Scholar

[10] Feng S J, Ran S, Zhu D C, Liu W, Chen C S. Energy Fuels, 2004, 18: 385.

Google Scholar

[11] Choudhary V R, Mondal K C, Choudhary T V. Catal. Commun., 2007, 8: 561.

Google Scholar

[12] Liu T F, Snyder C, Veser G. Ind. Eng. Chem. Res., 2007, 46: 9045.

Google Scholar

[13] Wang Z X, Dong T, Yuan L X, Kan T, Zhu X F, Torimoto Y, Sadakata M, Li Q X. Energy Fuels, 2007, 21: 2421.

Google Scholar

[14] Mukoma P, Hildebrandt D, Glasser D, Coville N. Ind. Eng. Chem. Res., 2007, 46: 156.

Google Scholar

[15] Mhadeshwar A B, Vlachos D G. Ind. Eng. Chem. Res., 2007, 46: 5310.

Google Scholar

[16] Gao X X, Huang C J, Zhang N W, Li J H, Weng W Z, Wan H L. Catal. Today, 2008, 131: 211.

Google Scholar

[17] Ji H B, Feng D Y, He Y B, JNGC, 2010, 19: 575.

Google Scholar

[18] Elmasides C, Ioannides T, Verykios X E. AIChE J., 2000, 46: 1260.

Google Scholar

[19] Au C T, Hu Y H, Wan H L. Catal. Lett., 1994, 27: 199.

Google Scholar

[20] Au C T, Wang H Y, Wan H L. J. Catal., 1996, 158: 343.

Google Scholar

[21] Li Y H, Wang Y Q, Hong X B, Zhang Z G, Fang Z P, Lu Y B, Han Z Q, AIChE J., 2006, 52: 4276.

Google Scholar

[22] Boucouvalas Y, Zhang Z L, Verykios X E. Catal. Lett., 1996, 40: 189.

Google Scholar

[23] Chiappetta G, Clarizia G, Drioli E. Chem. Eng. J., 2008, 136: 373.

Google Scholar

[24] Liu H T, Yang D X, Gao R X, Chen L, Zhang S B, Wang X L. Catal. Commun., Available online 28 November (2007).

Google Scholar

[25] Barrio V L, Schaub G, Rohde M, Rabe S, Vogel F, Cambra J F, Arias P L, Güemez M B. Int. J. Hydrogen Energy, 2007, 32: 1421.

Google Scholar

[26] Ramaswamy R C, Ramachandran P A, Dudukovic M P. Chem. Eng. Sci., Available online 17 November (2007).

Google Scholar

[27] Weng W Z, Yan Q G, Lou C R, Liao Y Y, Chen M S, Wan H L. Stud. Surf. Sci. Catal., 2001, 136: 233.

Google Scholar

[28] Bruno T, Beretta A, Groppi G, Roderi M, Forzatti P. Catal. Today, 2005, 99: 89.

Google Scholar

[29] Eriksson S, Rojas S, Boutonnet M, Fierro J L G. Appl. Catal. A: Gen., 2007, 326: 8.

Google Scholar